564 research outputs found

    High Resolution 8 mm and 1 cm Polarization of IRAS 4A from the VLA Nascent Disk and Multiplicity (VANDAM) Survey

    Get PDF
    Magnetic fields can regulate disk formation, accretion and jet launching. Until recently, it has been difficult to obtain high resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ~ 0.2'' (50 AU) resolution at {\lambda} = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with {\beta} ~ 1.3, suggesting that mm/cm-sized grains have grown and survived in the short lifetime of the protostar.Comment: Accepted to ApJL. 13 pages, 4 figure

    The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. VI. Characterizing the Formation Mechanism for Close Multiple Systems

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of multiple protostar systems in the Perseus molecular cloud previously detected by the Karl G. Jansky Very Large Array (VLA). We observed 17 close (<<600~AU separation) multiple systems at 1.3~mm in continuum and five molecular lines (i.e., \twco, \cateo, \thco, H2_2CO, SO) to characterize the circum-multiple environments in which these systems are forming. We detect at least one component in the continuum for the 17 multiple systems. In three systems, one companion is not detected, and for two systems the companions are unresolved at our observed resolution. We also detect circum-multiple dust emission toward 8 out of 9 Class 0 multiples. Circum-multiple dust emission is not detected toward any of the 8 Class I multiples. Twelve systems are detected in the dense gas tracers toward their disks/inner envelopes. For these 12 systems, we use the dense gas observations to characterize their formation mechanism. The velocity gradients in the circum-multiple gas are clearly orthogonal to the outflow directions in 8 out of the 12 systems, consistent with disk fragmentation. Moreover, only two systems with separations <<200~AU are \textit{inconsistent} with disk fragmentation, in addition to the two widest systems (>>500~AU). Our results suggest that disk fragmentation via gravitational instability is an important formation mechanism for close multiple systems, but further statistics are needed to better determine the relative fraction formed via this method.Comment: 48 Pages, 26 Figures, 7 Tables, Accepted by Ap

    Finding substructures in protostellar disks in Ophiuchus

    Full text link
    High-resolution, millimeter observations of disks at the protoplanetary stage reveal substructures such as gaps, rings, arcs, spirals, and cavities. While many protoplanetary disks host such substructures, only a few at the younger protostellar stage have shown similar features. We present a detailed search for early disk substructures in ALMA 1.3 and 0.87~mm observations of ten protostellar disks in the Ophiuchus star-forming region. Of this sample, four disks have identified substructure, two appear to be smooth disks, and four are considered ambiguous. The structured disks have wide Gaussian-like rings (σR/Rdisk0.26\sigma_R/R_{\mathrm{disk}}\sim0.26) with low contrasts (C<0.2C<0.2) above a smooth disk profile, in comparison to protoplanetary disks where rings tend to be narrow and have a wide variety of contrasts (σR/Rdisk0.08\sigma_R/R_{\mathrm{disk}}\sim0.08 and CC ranges from 010-1). The four protostellar disks with the identified substructures are among the brightest sources in the Ophiuchus sample, in agreement with trends observed for protoplanetary disks. These observations indicate that substructures in protostellar disks may be common in brighter disks. The presence of substructures at the earliest stages suggests an early start for dust grain growth and, subsequently, planet formation. The evolution of these protostellar substructures is hypothesized in two potential pathways: (1) the rings are the sites of early planet formation, and the later observed protoplanetary disk ring-gap pairs are secondary features, or (2) the rings evolve over the disk lifetime to become those observed at the protoplanetary disk stage.Comment: Accepted by ApJ, 22 pages, 10 figure

    Sites of Planet Formation in Binary Systems. I. Evidence for Disk-Orbit Alignment in the Close Binary FO Tau

    Full text link
    Close binary systems present challenges to planet formation. As binary separations decrease, so too do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and, therefore, planet formation. In this work, we characterize the young binary-disk system, FO Tau. We determine the first full orbital solution for the system, finding masses of 0.350.05+0.06 M0.35^{+0.06}_{-0.05}\ M_\odot and 0.34±0.05 M0.34\pm0.05\ M_\odot for the stellar components, a semi-major axis of 22(1+2)22(^{+2}_{-1}) AU, and an eccentricity of 0.21(0.03+0.04)0.21(^{+0.04}_{-0.03}). With long-baseline ALMA interferometry, we detect 1.3mm continuum and 12CO (J=21)^{12}{\mathrm{CO}} \ (J=2-1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation.Comment: AJ accepted, 29 pages, 14 figure

    Kinematic Analysis of a Protostellar Multiple System: Measuring the Protostar Masses and Assessing Gravitational Instability in the Disks of L1448 IRS3B and L1448 IRS3A

    Full text link
    We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations towards a compact (230~au separation) triple protostar system, L1448 IRS3B, at 879~\micron with \contbeam~resolution. Spiral arm structure within the circum-multiple disk is well resolved in dust continuum toward IRS3B, and we detect the known wide (2300~au) companion, IRS3A, also resolving possible spiral substructure. Using dense gas tracers, C17O, H13CO++, and H13CN, we resolve the Keplerian rotation for both the circum-triple disk in IRS3B and the disk around IRS3A. Furthermore, we use the molecular line kinematic data and radiative transfer modeling of the molecular line emission to confirm that the disks are in Keplerian rotation with fitted masses of 1.190.07+0.131.19^{+0.13}_{-0.07} for IRS3B-ab, 1.510.07+0.061.51^{+0.06}_{-0.07}~Msun for IRS3A, and place an upper limit on the central protostar mass for the tertiary IRS3B-c of 0.2~Msun. We measure the mass of the fragmenting disk of IRS3B to be 0.29~Msun from the dust continuum emission of the circum-multiple disk and estimate the mass of the clump surrounding IRS3B-c to be 0.07~Msun. We also find that the disk around IRS3A has a mass of 0.04~Msun. By analyzing the Toomre~Q parameter, we find the IRS3A circumstellar disk is gravitationally stable (Q>>5), while the IRS3B disk is consistent with a gravitationally unstable disk (Q<<1) between the radii 200-500~au. This coincides with the location of the spiral arms and the tertiary companion IRS3B-c, supporting the hypothesis that IRS3B-c was formed in situ via fragmentation of a gravitationally unstable disk

    Dust masses of young disks: constraining the initial solid reservoir for planet formation

    Get PDF
    In recent years evidence has been building that planet formation starts early, in the first \sim 0.5 Myr. Studying the dust masses available in young disks enables understanding the origin of planetary systems since mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka-band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities. Using the DIANA opacity model including large grains, with a dust opacity value of κ9 mm\kappa_{\rm 9\ mm} = 0.28 cm2^{2} g1^{-1}, the median dust masses of the embedded disks in Perseus are 158 M_\oplus for Class 0 and 52 M_\oplus for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M_\oplus and 12 M_\oplus for Class 0 and Class I, respectively, obtained using the maximum dust opacity value κ1.3mm\kappa_{\rm 1.3mm} = 2.3 cm2^{2} g1^{-1}. The dust masses of young Class 0 and I disks are larger by at least a factor of 10 and 3, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of \sim 15%. Higher efficiency of \sim 30% is necessary if the planet formation is set to start in Class I disks.Comment: 16 pages, 10 figures, accepted for publication in A&

    HAWC+/SOFIA Polarimetry in L1688: Relative Orientation of Magnetic Field and Elongated Cloud Structure

    Full text link
    We present a study of the relative orientation between the magnetic field and elongated cloud structures for the ρ\rho Oph A and ρ\rho Oph E regions in L1688 in the Ophiuchus molecular cloud. Combining inferred magnetic field orientation from HAWC+ 154 μ\mum observations of polarized thermal emission with column density maps created using Herschel submillimeter observations, we find consistent perpendicular relative alignment at scales of 0.020.02 pc (33.6"33.6" at d137d \approx 137 pc) using the histogram of relative orientations (HRO) technique. This supports the conclusions of previous work using Planck polarimetry and extends the results to higher column densities. Combining this HAWC+ HRO analysis with a new Planck HRO analysis of L1688, the transition from parallel to perpendicular alignment in L1688 is observed to occur at a molecular hydrogen column density of approximately 1021.710^{21.7} cm2^{-2}. This value for the alignment transition column density agrees well with values found for nearby clouds via previous studies using only Planck observations. Using existing turbulent, magnetohydrodynamic simulations of molecular clouds formed by colliding flows as a model for L1688, we conclude that the molecular hydrogen volume density associated with this transition is approximately 104\sim10^{4} cm3^{-3}. We discuss the limitations of our analysis, including incomplete sampling of the dense regions in L1688 by HAWC+.Comment: To be published in Ap
    corecore