5 research outputs found

    Oscillatory brain responses to own names uttered by unfamiliar and familiar voices

    Get PDF
    AbstractAmong auditory stimuli, the own name is one of the most powerful and it is able to automatically capture attention and elicit a robust electrophysiological response. The subject’s own name (SON) is preferentially processed in the right hemisphere, mainly because of its self-relevance and emotional content, together with other personally relevant information such as the voice of a familiar person. Whether emotional and self-relevant information are able to attract attention and can be, in future, introduced in clinical studies remains unclear. In the present study we used EEG and asked participants to count a target name (active condition) or to just listen to the SON or other unfamiliar names uttered by a familiar or unfamiliar voice (passive condition). Data reveals that the target name elicits a strong alpha event related desynchronization with respect to non-target names and triggers in addition a left lateralized theta synchronization as well as delta synchronization.In the passive condition alpha desynchronization was observed for familiar voice and SON stimuli in the right hemisphere.Altogether we speculate that participants engage additional attentional resources when counting a target name or when listening to personally relevant stimuli which is indexed by alpha desynchronization whereas left lateralized theta synchronization may be related to verbal working memory load. After validating the present protocol in healthy volunteers it is suggested to move one step further and apply the protocol to patients with disorders of consciousness in which the degree of residual cognitive processing and self-awareness is still insufficiently understood

    NeuroImage / Standing sentinel during human sleep : continued evaluation of environmental stimuli in the absence of consciousnes

    No full text
    While it is a well-established finding that subjects' own names (SON) and familiar voices are salient during wakefulness, we here investigated processing of environmental stimuli during sleep including deep N3 and REM sleep. Besides the effects of sleep depth we investigated how sleep-specific EEG patterns (i.e. sleep spindles and slow oscillations [SOs]) relate to stimulus processing. Using 256-channel EEG we studied processing of auditory stimuli by means of event-related oscillatory responses (de-/synchronisation, ERD/ERS) and potentials (ERPs) in N=17 healthy sleepers. We varied stimulus salience by manipulating subjective (SON vs. unfamiliar name) and paralinguistic emotional relevance (familiar vs. unfamiliar voice, FV/UFV). Results reveal that evaluation of voice familiarity continues during all NREM sleep stages and even REM sleep suggesting a ‘sentinel processing mode of the human brain in the absence of wake-like consciousness. Especially UFV stimuli elicit larger responses in a 115Hz range suggesting they continue being salient. Beyond this, we find that sleep spindles and the negative slope of SOs attenuate information processing. However, unlike previously suggested they do not uniformly inhibit information processing, but inhibition seems to be scaled to stimulus salience.(VLID)266793
    corecore