8 research outputs found

    Mechanisms of oxidative stress in human aortic aneurysms — association with clinical risk factors for atherosclerosis and disease severity

    Get PDF
    Aortic abdominal aneurysms (AAA) are important causes of cardiovascular morbidity and mortality. Oxidative stress may link multiple mechanisms of AAA including vascular inflammation and increased metalloproteinase activity. However, the mechanisms of vascular free radical production remain unknown. Accordingly, we aimed to determine sources and molecular regulation of vascular superoxide (O2radical dot−) production in human AAA. Methods and results: AAA segments and matched non-dilated aortic samples were obtained from 40 subjects undergoing AAA repair. MDA levels (determined by HPLC/MS) were greater in plasma of AAA subjects (n = 16) than in risk factor matched controls (n = 16). Similarly, superoxide production, measured by lucigenin chemiluminescence and dihydroethidium fluorescence, was increased in aneurysmatic segments compared to non-dilated aortic specimens. NADPH oxidases and iNOS are the primary sources of O2radical dot− in AAA. Xanthine oxidase, mitochondrial oxidases and cyclooxygenase inhibition had minor or no effect. Protein kinase C inhibition had no effect on superoxide production in AAA. NADPH oxidase subunit mRNA levels for p22phox, nox2 and nox5 were significantly increased in AAAs while nox4 mRNA expression was lower. Superoxide production was higher in subjects with increased AAA repair risk Vanzetto score and was significantly associated with smoking, hypercholesterolemia and presence of CAD in AAA cohort. Basal superoxide production and NADPH oxidase activity were correlated to aneurysm size. Conclusions: Increased expression and activity of NADPH oxidases are important mechanisms underlying oxidative stress in human aortic abdominal aneurysm. Uncoupled iNOS may link oxidative stress to inflammation in AAA. Oxidative stress is related to aneurysm size and major clinical risk factors in AAA patients

    Mechanisms of increased vascular superoxide production in human varicose veins

    No full text
    INTRODUCTION Varicose vein disease is one of the most common morbidities in the developed countries. Recent studies have shown that oxidative stress is increased in varicose veins (VV) and venous insufficiency. However, the exact mechanisms of oxidative stress in VV remain unknown. OBJECTIVES The aim of the study was to measure superoxide anion production and analyze its enzymatic sources in VV in comparison with control human saphenous veins (HSV). Superoxide production was also compared between the proximal and distal segments of the veins. PATIENTS AND METHODS Proximal and distal segments of varicose veins (14 patients, aged 52 ±3.5 years) and control veins (15 patients, aged 56 ±4 years) were obtained during VV removal or elective coronary artery bypass graft surgery, respectively. Subjects were matched for age, sex, and the major risk factors for atherosclerosis. Superoxide was measured by lucigenin-enhanced chemiluminescence (5 μmol/l) in the presence and absence of oxidase inhibitors. RESULTS Superoxide production was increased in VV compared with control HSV. This increase was particularly evident in the distal segments of VV. There was a significant correlation between superoxide production in the proximal and distal segments of HSV but not of VV. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and uncoupled nitric oxide synthase (NOS) were the major sources of superoxide in VV, because their inhibitors greatly attenuated superoxide production in VV. CONCLUSIONS NADPH oxidases and NOS could represent valuable drug targets for pharmacological treatment and prevention of varicose vein disease. Oxidative stress may provide a link between endothelial dysfunction, inflammation, and immune activation and the development of chronic venous dysfunction

    Mechanisms of increased vascular superoxide production in human varicose veins

    No full text
    INTRODUCTION Varicose vein disease is one of the most common morbidities in the developed countries. Recent studies have shown that oxidative stress is increased in varicose veins (VV) and venous insufficiency. However, the exact mechanisms of oxidative stress in VV remain unknown. OBJECTIVES The aim of the study was to measure superoxide anion production and analyze its enzymatic sources in VV in comparison with control human saphenous veins (HSV). Superoxide production was also compared between the proximal and distal segments of the veins. PATIENTS AND METHODS Proximal and distal segments of varicose veins (14 patients, aged 52 ±3.5 years) and control veins (15 patients, aged 56 ±4 years) were obtained during VV removal or elective coronary artery bypass graft surgery, respectively. Subjects were matched for age, sex, and the major risk factors for atherosclerosis. Superoxide was measured by lucigenin-enhanced chemiluminescence (5 μmol/l) in the presence and absence of oxidase inhibitors. RESULTS Superoxide production was increased in VV compared with control HSV. This increase was particularly evident in the distal segments of VV. There was a significant correlation between superoxide production in the proximal and distal segments of HSV but not of VV. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and uncoupled nitric oxide synthase (NOS) were the major sources of superoxide in VV, because their inhibitors greatly attenuated superoxide production in VV. CONCLUSIONS NADPH oxidases and NOS could represent valuable drug targets for pharmacological treatment and prevention of varicose vein disease. Oxidative stress may provide a link between endothelial dysfunction, inflammation, and immune activation and the development of chronic venous dysfunction
    corecore