88 research outputs found

    The role of diffusion induced electro-osmosis in the coupling between hydraulic and ionic fluxes through semipermeable clay soils

    Get PDF
    Most of the experimental research conducted to date has provided evidence on the semipermeable membrane behaviour of smectite-rich clay soils, the extent of which is typically quantified through the reflection coefficient, when the permeant (electrolyte) solution contains a single monovalent or divalent salt. Under such conditions, the osmotic flow of solution is controlled to a great extent by the different accessibility of ions and water molecules to the soil porosity, which is referred to as the chemico-osmotic effect. However, theoretical simulations of coupled solute and solvent transport suggest that, when two or more cations that diffuse in water at different rates are present simultaneously in the permeant solution, the electro-osmotic effect, which stems from the condition of null electric current density through the porous medium, can be enhanced compared to the case of a single salt to such an extent that it becomes comparable to or even greater than the chemico-osmotic effect. An original closed-form analytical solution to the problem of calculating the diffusion potential, which in turn controls the magnitude of the electro-osmotic effect, is here illustrated, and the relative importance of the aforementioned contributions to multi-electrolyte systems is examined through the interpretation of laboratory test results from the literature pertaining to a bentonite amended clay soil in equilibrium with aqueous mixtures of potassium chloride (KCl) and hydrochloric acid (HCl). The proposed mechanistic model is shown to be able to quantitatively capture the impact of both chemico-osmosis and electro-osmosis on the measured reflection coefficient of smectite clays, thereby breaking new ground in the experimental and theoretical research on the osmotic properties of engineered clay barriers in contact with mixed aqueous electrolyte solutions

    Relevance of Chemico-Osmotic and Electro-Osmotic Phenomena in Bentonite-Based Barriers

    Get PDF
    Osmosis is known to play a key role in reducing the transport rate of contaminants through the natural and engineered clay barriers that are used for a number of geoenvironmental applications, such as the lining of landfills and the deep geological disposal of radioactive wastes. Although a significant body of experimental research has focused on the quantification of osmotic phenomena in smectite clays permeated with single-electrolyte solutions, no evidence has been provided about the membrane behaviour of clays in solute mixtures and, specifically, about the so-called osmotic anomalies (i.e. membrane efficiency coefficient outside the 0 to 1 range) that have been documented in the biological and chemical literature for fine-porous charged diaphragms in the presence of two or more electrolytes. In view of the similarities between such fine-porous media and smectite clays, the aim of the paper is to discuss the conditions under which bentonite-based barriers are expected to exhibit the aforementioned osmotic anomalies, which are shown to be caused by the different diffusivities and electrochemical valences of the migrating cations

    Monozygotic Twins Concordant for Infantile Autism: Follow-Up.

    Get PDF
    This paper presents a well-documented case of monozygotic male twins concordant for infantile autism, with a twelve-year follow-up. Assessments include birth records, laboratory studies, physical measurements, psychometrics and quantifiable behavioural ratings by independent raters using multiple scales. Possible aetiological factors of infantile autism, as well as outcome are discussed

    Critical issues in the determination of the bentonite cation exchange capacity

    Get PDF
    The swelling pressure and transport properties of bentonites are controlled by the electric charge density of solid particles, which is commonly estimated from the laboratory measurement of the cation exchange capacity (CEC). However, the standard ammonium displacement method for CEC determination does not take into account the fabric changes that occur in bentonites under exposure to high salt concentration solutions. A series of laboratory tests was conducted to assess the relevance of such a critical issue, by varying the concentration of the extracting KCl solution with respect to that of the standard test. The obtained results show that the release of the adsorbed ammonium cations depends on the bentonite fabric, which is controlled by the KCl concentration. As a consequence, the ammonium displacement method may provide an unrepresentative estimate of the CEC of bentonites. The methylene blue titration method, despite its apparently more limited accuracy, instead seems to provide a more reliable estimation of the CEC, as the bentonite fabric is maintained dispersed during the test

    Municipal solid waste management under Covid-19: Challenges and recommendations

    Get PDF
    Covid-19 is proving to be an unprecedented disaster for human health, social contacts and the economy worldwide. It is evident that SARS-CoV-2 may spread through municipal solid waste (MSW), if collected, bagged, handled, transported or disposed of inappropriately. Under the stress placed by the current pandemic on the sanitary performance across all MSW management (MSWM) chains, this industry needs to re-examine its infrastructure resilience with respect to all processes, from waste identification, classification, collection, separation, storage, transportation, recycling, treatment and disposal. The current paper provides an overview of the severe challenges placed by Covid-19 onto MSW systems, highlighting the essential role of waste management in public health protection during the ongoing pandemic. It also discusses the measures issued by various international organisations and countries for the protection of MSWM employees (MSWEs), identifying gaps, especially for developing countries, where personal protection equipment and clear guidelines to MSWEs may not have been provided, and the general public may not be well informed. In countries with high recycling rates of MSW, the need to protect MSWEs' health has affected the supply stream of the recycling industry. The article concludes with recommendations for the MSW industry operating under public health crisis conditions

    Environmental geotechnics: Challenges and opportunities in the post-Covid-19 world

    Get PDF
    The outbreak of the coronavirus disease 2019 (Covid-19) pandemic not only has created a health crisis across the world but is also expected to impact negatively the global economy and societies at a scale that is maybe larger than that of the 2008 financial crisis. Simultaneously, it has inevitably exerted many negative consequences on the geoenvironment on which human beings depend. The current paper articulates the role of environmental geotechnics in elucidating and mitigating the effects of the current pandemic. It is the belief of all authors that the Covid-19 pandemic presents not only significant challenges but also opportunities for the development of the environmental geotechnics field. This discipline should make full use of geoenvironmental researchers' and engineers' professional skills and expertise to look for development opportunities from this crisis, to highlight the irreplaceable position of the discipline in the global fight against pandemics and to contribute to the health and prosperity of communities, to serve humankind better. In order to reach this goal while taking into account the specificity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the uncertainty of its environmental effects, it is believed that more emphasis should be placed on the following research directions: pathogen-soil interactions; isolation and remediation technologies for pathogen-contaminated sites; new materials for pathogen-contaminated soil; recycling and safe disposal of medical wastes; quantification of uncertainty in geoenvironmental and epidemiological problems; emerging technologies and adaptation strategies in civil, geotechnical and geoenvironmental infrastructures; pandemic-induced environmental risk management; and modelling of pathogen transport and fate in geoenvironment, among others. Moreover, Covid-19 has made it clear to the environmental geotechnics community the importance of urgent international co-operation and of multidisciplinary research actions that must extend to a broad range of scientific fields, including medical and public health disciplines, in order to meet the complexities posed by the Covid-19 pandemic

    Osmotic transport through clay membrane barriers

    No full text
    • …
    corecore