17 research outputs found

    Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue

    Get PDF
    Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT- selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1- deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT

    Next-generation sequencing reveals a novel role of lysine-specific demethylase 1 in adhesion of rhabdomyosarcoma cells

    No full text
    Lysine-specific demethylase 1 (LSD1), a histone lysine demethylase with the main specificity for H3K4me2, has been shown to be overexpressed in rhabdomyosarcoma (RMS) tumor samples. However, its role in RMS biology is not yet well understood. Here, we identified a new role of LSD1 in regulating adhesion of RMS cells. Genetic knockdown of LSD1 profoundly suppressed clonogenic growth in a panel of RMS cell lines, whereas LSD1 proved to be largely dispensable for regulating cell death and short-term survival. Combined RNA and ChIP-sequencing performed to analyze RNA expression and histone methylation at promoter regions revealed a gene set enrichment for adhesion-associated terms upon LSD1 knockdown. Consistently, LSD1 knockdown significantly reduced adhesion to untreated surfaces. Importantly, precoating of the plates with the adhesives collagen I or fibronectin rescued this reduced adhesion of LSD1 knockdown cells back to levels of control cells. Using KEGG pathway analysis, we identified 17 differentially expressed genes (DEGs) in LSD1 knockdown cells related to adhesion processes, which were validated by qRT-PCR. Combining RNA and ChIP-sequencing results revealed that, within this set of genes, SPP1, C3AR1, ITGA10 and SERPINE1 also exhibited increased H3K4me2 levels at their promoter regions in LSD1 knockdown compared to control cells. Indeed, LSD1 ChIP experiments confirmed enrichment of LSD1 at their promoter regions, suggesting a direct transcriptional regulation by LSD1. By identifying a new role of LSD1 in the modulation of cell adhesion and clonogenic growth of RMS cells, these findings highlight the importance of LSD1 in RMS

    Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells

    No full text
    Satellite cells can differentiate both into myocytes and brown adipocytes. Here, the authors show that the histone demethylase Lsd1 prevents adipogenic differentiation of satellite cells by repressing expression of Glis1, and that its ablation changes satellite cell fate towards brown adipocytes and delays muscle regeneration in mice

    Heterogeneous Antibody-Based Activity Assay for Lysine Specific Demethylase 1 (LSD1) on a Histone Peptide Substrate

    Get PDF
    Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity. We used a biotinylated histone 3 peptide (amino acids 1–21) with monomethylated lysine 4 (H3K4me) as the substrate for the detection of LSD1 activity with antibody-mediated quantitation of the demethylated product. We have successfully used the assay to measure the potency of reference inhibitors. The advantage of the heterogeneous format is shown with cumarin-based LSD1 inhibitor candidates that we have identified using virtual screening. They had shown good potency in an established LSD1 screening assay. The new heterogeneous assay identified them as false positives, which was verified using mass spectrometry

    All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta

    No full text
    Retinoids regulate gene expression through binding to the nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). In contrast, no ligands for the retinoic acid receptor-related orphan receptors beta and gamma (ROR beta and gamma) have been identified, yet structural data and structure-function analyses indicate that ROR beta is a ligand-regulated nuclear receptor. Using nondenaturing mass spectrometry and scintillation proximity assays we found that all-trans retinoic acid (ATRA) and several retinoids bind to the ROR beta ligand-binding domain (LBD). The crystal structures of the complex with ATRA and with the synthetic analog ALRT 1550 reveal the binding modes of these ligands. ATRA and related retinoids inhibit ROR beta but not ROR alpha transcriptional activity suggesting that high-affinity, subtype-specific ligands could be designed for the identification of ROR beta target genes. Our results identify ROR beta as a retinoid-regulated nuclear receptor, providing a novel pathway for retinoid action

    The histone code reader SPIN1 controls RET signaling in liposarcoma

    No full text
    The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy

    LSD1 promotes oxidative metabolism of white adipose tissue

    No full text
    Exposure to environmental cues such as cold or nutritional imbalance requires white adipose tissue (WAT) to adapt its metabolism to ensure survival. Metabolic plasticity is prominently exemplified by the enhancement of mitochondrial biogenesis in WAT in response to cold exposure or b3-adrenergic stimulation. Here we show that these stimuli increase the levels of lysine-specific demethylase 1 (LSD1) in WAT of mice and that elevated LSD1 levels induce mitochondrial activity. Genome-wide binding and transcriptome analyses demonstrate that LSD1 directly stimulates the expression of genes involved in oxidative phosphorylation (OXPHOS) in cooperation with nuclear respiratory factor 1 (Nrf1). In transgenic (Tg) mice, increased levels of LSD1 promote in a cell-autonomous manner the formation of islets of metabolically active brown-like adipocytes in WAT. Notably, Tg mice show limited weight gain when fed a high-fat diet. Taken together, our data establish LSD1 as a key regulator of OXPHOS and metabolic adaptation in WAT

    Nitroreductase-Mediated Release of Inhibitors of Lysine-Specific Demethylase 1 (LSD1) from Prodrugs in Transfected Acute Myeloid Leukaemia Cells

    No full text
    Lysine-specific demethylase 1 (LSD1) has evolved as a promising therapeutic target for cancer treatment, especially in acute myeloid leukaemia (AML). To approach the challenge of site-specific LSD1 inhibition, we developed an enzyme-prodrug system with the bacterial nitroreductase NfsB (NTR) that was expressed in the virally transfected AML cell line THP1-NTR+. The cellular activity of the NTR was proven with a new luminescent NTR probe. We synthesised a diverse set of nitroaromatic prodrugs that by design do not affect LSD1 and are reduced by the NTR to release an active LSD1 inhibitor. The 2-nitroimidazolyl prodrug (1f) of a potent LSD1 inhibitor emerged as one of the best prodrug candidates with a pronounced selectivity window between wild-type and transfected NTR+ cells. Our prodrugs are selectively activated and release the LSD1 inhibitor locally in turn blocking colony formation. This system may be applied in future targeting approaches to reach tissue- or organ-type-specific inhibition of LSD1.<br /

    Soft drug-inhibitors for the epigenetic targets Lysine-Specific Demethylase 1 (LSD1) and Histone Deacetylases (HDACs)

    No full text
    Epigenetic modulators such as Lysine-specific Demethylase 1 (LSD1) and Histone Deacetylases (HDACs), are drug targets for cancer, neuropsychiatric disease or inflammation but inhibitors of these enzymes exhibit considerable side effects. For a potential local treatment with reduced systemic toxicity, we present here soft drug candidates as new LSD1 and HDAC inhibitors. A soft drug is a compound that is degraded in vivo to less active metabolites, after having achieved its therapeutic function. This has been successfully applied for corticosteroids in the clinic but soft drugs targeting epigenetic enzymes are scarce, with the HDAC inhibitor remetinostat being the only example. We have developed new methyl ester containing inhibitors targeting LSD1 respectively HDACs and compared the biological activity of these to their respective carboxylic acids cleavage products. In vitro activity assays, cellular experiments, and a stability assay identified potent HDAC and LSD1 soft drug candidates that are superior to their corresponding carboxylic acids in cellular models
    corecore