27 research outputs found

    Race and reputation: perceived racial group trustworthiness influences the neural correlates of trust decisions

    Get PDF
    Decisions to trust people with whom we have no personal history can be based on their social reputation-a product of what we can observe about them (their appearance, social group membership, etc.)-and our own beliefs. The striatum and amygdala have been identified as regions of the brain involved in trust decisions and trustworthiness estimation, respectively. However, it is unknown whether social reputation based on group membership modulates the involvement of these regions during trust decisions. To investigate this, we examined blood-oxygenation-level-dependent (BOLD) activity while participants completed a series of single-shot trust game interactions with real partners of varying races. At the time of choice, baseline BOLD responses in the striatum correlated with individuals' trust bias-that is, the overall disparity in decisions to trust Black versus White partners. BOLD signal in the striatum was higher when deciding to trust partners from the race group that the individual participant considered less trustworthy overall. In contrast, activation of the amygdala showed greater BOLD responses to Black versus White partners that scaled with the amount invested. These results suggest that the amygdala may represent emotionally relevant social group information as a subset of the general detection function it serves, whereas the striatum is involved in representing race-based reputations that shape trust decisions

    Effects of early life stress on amygdala and striatal development

    Get PDF
    Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one’s social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction

    Choosing for others changes dissociable computations underpinning risky decision-making

    No full text
    De-identified data, task scripts and choice set

    Effects of direct social experience on trust decisions and neural reward circuitry

    Get PDF
    The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner’s moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball tossing game with three fictional partners manipulated to be perceived as good, bad or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants’ trust decisions were influenced by their prior experience in the ball tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction-error (PE) learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms

    An fMRI Dataset on Social Reward Processing and Decision Making in Younger and Older Adults

    No full text
    Abstract Behavioural and neuroimaging research has shown that older adults are less sensitive to financial losses compared to younger adults. Yet relatively less is known about age-related differences in social decisions and social reward processing. As part of a pilot study, we collected behavioural and functional magnetic resonance imaging (fMRI) data from 50 participants (Younger: N = 26, ages 18–34 years; Older: N = 24, ages 63–80 years) who completed three tasks in the scanner: an economic trust game as the investor with three partners (computer, stranger, friend) as the investee; a card-guessing task with monetary gains and losses shared with three partners (computer, stranger, friend); and an ultimatum game as responder to three anonymous proposers (computer, age-similar adults, age-dissimilar adults). We also collected B0 field maps and high-resolution structural images (T1-weighted and T2-weighted images). These data could be reused to answer questions about moment-to-moment variability in fMRI signal, representational similarity between tasks, and brain structure

    An fMRI Dataset on Social Reward Processing and Decision Making in Younger and Older Adults

    No full text
    Behavioural and neuroimaging research has shown that older adults are less sensitive to financial losses compared to younger adults. Yet relatively less is known about age-related differences in social decisions and social reward processing. As part of a pilot study that was sponsored by the Scientific Research Network on Decision Neuroscience and Aging, we collected behavioural and functional magnetic resonance imaging (fMRI) data from 50 participants (Younger: N = 26, ages 18–34 years; Older: N = 24, ages 63–80 years) who completed three tasks in the scanner: an economic trust game as the investor with three partners (computer, stranger, friend) as the investee; a card-guessing task with monetary gains and losses shared with three partners (computer, stranger, friend); and an ultimatum game as responder to three anonymous proposers (computer, age-similar adults, age-dissimilar adults). We also collected B0 field maps and high-resolution structural images (T1-weighted and T2-weighted images). These data could be reused to answer questions about moment-to-moment variability in fMRI signal, representational similarity between tasks, and brain structure
    corecore