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The human striatum is integral for reward-processing and supports learning by linking expe-
rienced outcomes with prior expectations. Recent endeavors implicate the striatum in
processing outcomes of social interactions, such as social approval/rejection, as well as in
learning reputations of others. Interestingly, social impressions often influence our behavior
with others during interactions. Information about an interaction partner’s moral character
acquired from biographical information hinders updating of expectations after interactions
via top down modulation of reward circuitry. An outstanding question is whether initial
impressions formed through experience similarly modulate the ability to update social
impressions at the behavioral and neural level. We investigated the role of experienced
social information on trust behavior and reward-related BOLD activity. Participants played a
computerized ball-tossing game with three fictional partners manipulated to be perceived
as good, bad, or neutral. Participants then played an iterated trust game as investors with
these same partners while undergoing fMRI. Unbeknownst to participants, partner behav-
ior in the trust game was random and unrelated to their ball-tossing behavior. Participants’
trust decisions were influenced by their prior experience in the ball-tossing game, investing
less often with the bad partner compared to the good and neutral. Reinforcement learn-
ing models revealed that participants were more sensitive to updating their beliefs about
good and bad partners when experiencing outcomes consistent with initial experience.
Increased striatal and anterior cingulate BOLD activity for positive versus negative trust
game outcomes emerged, which further correlated with model-derived prediction error
learning signals. These results suggest that initial impressions formed from direct social
experience can be continually shaped by consistent information through reward learning
mechanisms.
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INTRODUCTION
Social interactions are governed by social norms and expectations
that enable us to learn the reputation of others in order to estab-
lish relationships (Fehr and Camerer, 2007; Rilling and Sanfey,
2011). One factor critical to the development of meaningful social
relationships is trust. Trust is predicated on a notion of reciprocity,
that generous or kind behavior toward another will be reciprocated
(Berg et al., 1995; van den Bos et al., 2009). This expectation inner-
vates relationships across all facets of our social lives – business
partnerships, friendships, romantic relationships. Though crude
appraisals of trustworthiness can be made rapidly (Adolphs et al.,
1998; Willis and Todorov, 2006; Engell et al., 2007; Todorov et al.,
2008), decisions to pursue any kind of social relationship often
require learning one’s reputation via experience through repeated
interactions, akin to trial and error learning (Chang et al., 2010).
These experiences can be colored by prior social expectations such
as implicit racial attitudes (Stanley et al., 2011), or knowledge
of moral character (Delgado et al., 2005a), which can influence
decisions to trust and neural processing of social outcomes. It

is unclear, however, whether social impressions acquired through
direct social experience in a different domain can generalize and
bias trust behavior, as measured by performance in an economic
game, and associated neural mechanisms involved in reputation
building.

An extensive body of work has delineated a putative neural cir-
cuitry involved in reward-processing (for review see Haber and
Knutson, 2010). Of particular interest, the literature highlights
a role for the striatum and regions of medial prefrontal cortex
(mPFC) in coding reward outcome value (Robbins and Everitt,
1996; Delgado et al., 2000, 2003; Rolls, 2000; Knutson et al., 2001;
O’Doherty et al., 2002; Haber and Knutson, 2010). The human
striatum has been posited to be involved in learning through estab-
lishing links between actions and experienced outcomes (Tricomi
et al., 2004; Delgado et al., 2005b; Galvan et al., 2005); the striatum
further receives modulatory input from midbrain dopaminergic
(DA) nuclei thought to compute prediction error (PE) learning
signals (i.e., the difference between expected and received reward;
Schultz et al., 1997; Hollerman and Schultz, 1998; Sutton and
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Barto, 1998; Niv and Schoenbaum, 2008). Findings from human
neuroimaging studies demonstrate correlates of PE signaling in
the striatum (O’Doherty et al., 2003, 2004; Pessiglione et al., 2006;
Schonberg et al., 2007; Daw et al., 2011; Li et al., 2011b).

Equally important is the notion that valuation and learning
based on social outcomes (e.g., social approval, positive emotional
responses, peer feedback) seem to be coded similarly in reward cir-
cuitry (Izuma et al., 2010; Jones et al., 2011; Lin et al., 2012). This
extends to even more abstract social rewards such as reciprocity,
which can provide information about one’s reputation and guide
behavior in repeated interactions. For example, increased striatal
BOLD responses emerge when trustees in a repeated trust game
experience positive reciprocity from investors (e.g., investments
are better than expected), and these BOLD responses propagate
backward in time to before revelation of the investors’ decisions
as reputation for reciprocity is learned (King-Casas et al., 2005).
This pattern mirrors that observed in recordings of midbrain DA
neurons which fire to the earliest predictors of positive outcomes
(Schultz et al., 1997), implicating similar mechanisms at play dur-
ing social learning (Kishida and Montague, 2012). Subsequent
work has converged on the notion that perceiving trustworthi-
ness and learning reputation develops dynamically over time as
a function of changing social situations (Chang et al., 2010) and
partner reciprocity (van den Bos et al., 2009). These processes are
highly dependent upon corticostriatal reward circuitry, particu-
larly the ventral striatum and mPFC (Krueger et al., 2007; Phan
et al., 2010).

The ability to learn a partner’s reputation can be highly sen-
sitive to previously formed impressions of others. For example,
perceptions of moral character attained via instructed or third
party means prior to social interactions modulate both subse-
quent decisions to trust others, as well as the ability of neural
reward circuitry to effectively process outcomes from trust inter-
actions (Delgado et al., 2005a). In said study, participants learned
about the moral aptitude of three fictional partners via instructed
means (e.g., reading a biographical vignette), forming impressions
that the partners were either of praiseworthy, negative or neutral
moral character. In a subsequent trust game with these partners,
participants served as the investors in repeated trials. Even though
the partners played at a fixed 50% reinforcement rate, the initial
instructed biases influenced participants’ decision-making such
that they did not adapt behavior according to experienced out-
comes; this was also reflected by aberrant outcome processing
signals in the striatum.

Instructed learning is one method by which we may acquire
information about another person’s reputation. We can also have
direct experiences with others in separate domains that shape
initial impressions before subsequent interactions. For example,
we could experience a co-worker as aggressive or bossy in a
work environment, and bring this initial impression to subse-
quent interactions in a more recreational setting. It is unclear
whether learning through direct social experience modulates trust
behavior similarly to instructed learning. To investigate this, we
employed a two-step approach (see Figure 1). We first employed
a learning phase in which we manipulated personalities of fic-
tional partners in a computerized ball-tossing game (Cyberball;
Williams et al., 2000) to be perceived as either “good,” “bad,” or

“neutral.” Participants played this game prior to the second step, in
which they interacted with these same partners in a modified eco-
nomic trust game (Delgado et al., 2005a) while undergoing fMRI.
Importantly,all partners were programmed to demonstrate similar
reciprocation patterns in the trust game, irrespective of their per-
sonalities in Cyberball. We hypothesized that social impressions
formed from direct social experience would shape perceptions of
trustworthiness, subsequent behavior in the trust game, and neural
circuitry supporting reputation building.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-five participants (12 female, mean age= 22.32, SD= 5.58)
from Rutgers University-Newark and the surrounding area were
recruited for this study using posted advertisements. Imaging ses-
sions were conducted at the University Heights Advanced Imaging
Center at the University of Medicine and Dentistry of New Jer-
sey (Newark, NJ, USA). All participants undergoing fMRI were
screened for history of psychiatric illness and head trauma, and all
provided informed consent before participating. A total of seven
participants were excluded from analysis due to: excessive head
motion (>3 mm in at least one plane across more than one run
of the experiment; two participants); equipment malfunction in
the scanner (one participant); failure to comply with task require-
ments, specifically falling asleep for one or more functional runs
(two participants), resulting in an excessive amount of missed tri-
als (>1.5 SD from the mean of the group: mean= 4.5, SD= 6.72);
and insufficient variability in behavioral data to allow modeling of
imaging and behavioral data (see explanation below; two partic-
ipants). Behavioral and imaging analyses were conducted on the
remaining 18 participants (nine female, mean age= 23.06 years,
SD= 6.41). All participants received monetary compensation at a
rate of $25/h for their participation in the task. Additional bonuses
were paid based on outcomes from randomly chosen trials in the
task. The Internal Review Boards of both Rutgers University and
the University of Medicine and Dentistry of New Jersey approved
this study.

EXPERIMENTAL PARADIGM
The experiment took place over a total of 2 days, separated by no
more than 1 week. The imaging session took part on Day 1. Partici-
pants returned on Day 2 to perform a follow-up behavioral session.
Participants provided informed consent and completed an fMRI
screening form to ensure requirements for undergoing fMRI were
met on Day 1. After completion of these consent and screening
forms, participants were instructed and trained on the task.

Participants were told that they would be playing an economic
exchange game called the trust game with three fictional part-
ners (facial stimuli taken from the NimStim database, Tottenham
et al., 2009) whom they would first encounter through playing a
computerized ball-tossing game called Cyberball (Williams et al.,
2000). With the aim of mimicking the instructed learning proce-
dures of Delgado et al. (2005a) – three short bios depicting moral
character – we administered three short versions of the Cyberball
game, each consisting of a total of 20 throws. Participants played
with two partners at a time in each game, one on either side of the
computer screen (see Figure 1A). One partner (on the right side of
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FIGURE 1 |Task structure. (A) Participants were first introduced to three
different partners with whom they would later interact with in the trust game.
Participants played three separate versions of Cyberball. The character on the
right side of the screen was consistent across all three versions (control). The
face and name of the character on the left side changed in each version, as did
character ball-tossing behavior to be depicted as good, bad, neutral. (B) After
Cyberball, participants played an iterated trust game adapted from Delgado

et al. (2005a). Trials with each partner were interleaved within functional
scanning runs, as were lottery trials (non-social control). Each trial consisted
of a Decision Phase (2 s) in which they were to choose whether to keep or
share money with their partner (or not play/play the lottery). After a variable ISI
(10–12 s), the Outcome Phase (2 s) was presented consisting of feedback in
the form of partner reciprocation/defection, or null feedback indicating
defection by the participant. All trials were separated by a 10–12 s ITI.

the screen) was the same in all three versions of the game (control),
and participants were instructed that they would not interact with
this partner after Cyberball. The other partner (on the left side of
the screen) changed in each version of the game; these were the
partners with whom participants would interact with later. Partic-
ipants were instructed to simply to toss a ball back and forth with
the partners on screen. They were not made explicitly aware of
the fact that the partners’ personalities were manipulated to foster
social impressions: one always threw to the participant, never to
the control (good); another never threw to the participant (bad);
and one threw equally to the participant and the control (neutral).
The control character played the same in each version of the game,
always throwing equally to the participant and whichever other
character was displayed on the screen. We then assessed subjective
perceptions of character trustworthiness with seven-point Likert
scales (1= not at all, 7= very) after Cyberball. Facial stimuli for
the three characters with whom participants would play the trust
game were counterbalanced across participants.

Participants next played the trust game while undergoing fMRI.
We employed a modified, iterated trust game adapted from a previ-
ous study in our laboratory (Delgado et al., 2005a). On each trial of
the task (see Figure 1B), participants played in the role of investor
with one of the three partners (trustees) they met in Cyberball.
Participants began every trial with $1.00 which they could choose
to either keep or share with their partner. A choice to keep resulted
in $1.00 going to the participant, $0.00 to the partner, and the end
of that round of the trust game. A choice to share was described
as an investment: the $1.00 was multiplied by a factor of 3 before
being sent to the partner. Thus, the partner would receive $3.00,
which could be kept (negative outcome; $0.00 for participant), or
shared back evenly with the participant (positive outcome; $1.50
for participant, $1.50 for partner).

Unbeknownst to participants, all trustees were programmed
to reciprocate participant trust decisions in an equivalent man-
ner. If participants chose to share, they would receive positive and
negative outcomes approximately an equivalent number of times
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across social and non-social conditions. We also included a set of
lottery trials. On these trials, a photo of lottery balls being pulled
from a basket was presented, and the word “Lottery” was pre-
sented underneath. Participants similarly began these trials with
$1.00. They could choose to keep the $1.00 and not play the lot-
tery, or they could choose to play the lottery for a chance to win
$1.50. Lottery trials were included as a non-social control condi-
tion (e.g., equivalent risk level and amounts of money at stake),
and outcomes were similarly predetermined. As a check we exam-
ined average reciprocation rate as a function of condition (Mean
reciprocation rate= 0.48, SD= 0.11).

All trials (see Figure 1B) began with a decision phase (2 s) in
which participants were presented with a picture of one of the
three partners, or the lottery condition, and two boxes on the
bottom of the screen reminding them of their decision options.
Participants’ decisions were collected using an MRI-compatible
fiber optic response box (Current Designs, Inc., Philadelphia, PA,
USA). A jittered inter-stimulus interval (10–12 s) separated the
decision phase from the outcome phase. During the outcome
phase (2 s), participants were presented with a box depicting one
of three possibilities based on their responses [“You have kept
the money” – null trial, “(partner name) has chosen to keep the
money” – negative trial or “(partner name) has chosen to share
the money” – positive trial]. Lottery trials were similarly presented
(“You have kept the money,” “You have lost the lottery,” or “You
have won the lottery”). Trials were separated by a jittered intertrial
interval (10–12 s). Failure to make a response resulted in presen-
tation of the # symbol indicating a missed trial. No penalty was
administered for a missed trial; however, participants were told
that it was important to respond on all trials because they would
be paid additional bonuses based on outcomes from randomly
chosen trials in the task. The trust game consisted of 96 total trials,
separated into six functional scanning runs of 16 trials each. Each
condition (good, bad, neutral, lottery) was presented 24 times.
Stimuli were presented using a back projection system. The trust
game was programmed using E-Prime v. 2.0 (Psychology Software
Tools, Pittsburgh, PA, USA).

Upon completion of the trust game, participants made post-
session ratings of trustworthiness of each character on seven-point
Likert scales (1= not at all, 7= very). We also asked participants to
rate approximately how often (e.g., percentage) they thought each
of the partners shared back with them during the trust game. All
participants were paid both their participation rate and additional
bonuses from real outcomes of randomly chosen trials.

All participants returned for a follow-up behavioral session no
more than a week from the scan session. Here, participants played
a second trust game with a different set of partners, whose moral
character (good, bad, neutral) was portrayed via instructed learn-
ing – i.e., fictional biographical vignettes (Delgado et al., 2005a).
Participants were instructed that they would be playing with three
different fictional partners whom they would get to know by
reading a few short stories about them. Participants read three
vignettes and then rated each character on measures of trustwor-
thiness. Participants then played a trust game with these partners
as per that described on Day 1. Upon completion of the trust
game, participants were again paid real outcomes from randomly
chosen trials. Average total payment for participation plus all task

bonuses (e.g., Day 1+Day 2) was $67.00. All participants were
fully debriefed at the end of the session as to the predetermined
nature of reinforcement and the purpose of the study.

BEHAVIORAL ANALYSIS: SUBJECTIVE RATINGS
We assessed the effectiveness of the Cyberball manipulation to
instill social impressions, as well as changes in these impressions
after the trust game by entering participants’ trustworthiness rat-
ings at both time points into a 2 (time: pre/post)× 3 (condition)
repeated measures ANOVA. Ratings of likeability were submitted
to the same analyses. We also compared participants’ subjective
assessments of how often their trust was reciprocated during the
trust game by each of the three partners using a one-way repeated
measures ANOVA. Post hoc t -tests were conducted to further
examine resulting significant effects. If a family of post hoc tests
consisted of two or more comparisons, we corrected for multi-
ple comparisons using the Sequential Bonferroni Method (Holm,
1979; Rice, 1989). The same analyses were conducted on subjective
ratings from the Day 2 behavioral session.

BEHAVIORAL ANALYSIS: TRUST GAME BEHAVIOR
We assessed participants’ decisions to share as a function of condi-
tion in the trust game using a one-way repeated measures ANOVA.
Where appropriate, post hoc comparisons were corrected using the
Sequential Bonferroni Method (Holm, 1979; Rice, 1989). Behavior
from the Day 2 session was subjected to the same analyses.

BEHAVIORAL ANALYSIS: REINFORCEMENT LEARNING MODELS
To gain a greater understanding of how participants learned
to trust, we employed an abstract computational model, which
mathematically represents how participants make decisions.
This approach has been employed to understand the com-
putational processes underlying social decision-making (Chang
et al., 2010) and has been combined with fMRI to highlight the
neural processes associated with these computational processes
(O’Doherty et al., 2007; Behrens et al., 2008; Hampton et al., 2008;
Chang and Sanfey, 2011; Chang et al., 2011; Jones et al., 2011).
We used a simple approach to model the Expected Value (EV) of
a given choice, which we defined as the mathematical product of
the monetary value of the choice and the probability of realiz-
ing that choice (see Eq. 3). However, as the probability of partner
reciprocation in the trust game is unknown, we used a simple
Rescorla–Wagner PE rule (Rescorla and Wagner, 1972) from rein-
forcement learning theory (Sutton and Barto, 1998) to update
participants’ beliefs about the likelihood of partner reciprocation
after each encounter. This algorithm is akin to temporal-difference
learning (Sutton and Barto, 1998; O’Doherty et al., 2003) and
updates the belief about the likelihood of reciprocation by sub-
tracting the experienced outcome from the expected outcome (see
Eq. 1). We chose to allow the beliefs to update differentially based
on whether the feedback was experienced in the context of a loss
or gain (LG Model; Frank et al., 2007). More formally, the per-
ceived probability p of partner i reciprocating at time t can be
operationalized as

pi (t ) = pi (t − 1)+ αgain ∗max
(
γ− pi (t − 1) , 0

)
+ αloss

∗min
(
γ− pi (t − 1) , 0

) (1)
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where

γ =

{
1 when partner shares

0 when partner keeps
(2)

and αgain and αloss are constrained between 0 and 1. The starting
beliefs for all conditions pi(0) were initialized to 0.5 for maxi-
mum uncertainty. The EV of partner i at time t is calculated by
multiplying the participant’s perceived probability of their part-
ner reciprocating pi(t ) by the amount of money they will receive if
their partner reciprocates, which is half of the participant’s tripled
$1 investment (i.e., $1.5).

EVi (t ) = pi (t ) ∗ vi (t ) (3)

The probability Pr of a participant investing over keeping their
money for partner i at time t was determined by placing the EVi(t )
into a softmax function.

pri (t ) =
e

EVi (t )
β

e
EVi (t )

β + e
1
β

(4)

where 0≤ β≥ 1 and reflects the temperature of how much the
participant explores or exploits a strategy. The EV for keeping for
all decisions was $1 with 100% certainty (i.e., 1).

The model parameters were estimated in MATLAB (Math-
works, MA, USA) using the fmincon optimization function by
maximizing the log-likelihood of the data under the model on
a trial-to-trial basis. One hundred randomly selected start loca-
tions using RMsearch reduced the likelihood that the model con-
verged on a local minimum. Log-likelihood estimates (LLE) were
calculated separately for each participant as

LLE =
∑n

t=1
log

(
pri,j (t )

)
(5)

where i is the partner, j is the action (i.e., share or keep), t is the
trial, and n is the total number of trials.

To ensure that participants were actually learning the prob-
ability of their partner’s reciprocation via PE, we ran a control
model which assumed a fixed 50% probability of reciprocation
and therefore no learning (NL Model). Specifically, the EV for
each condition i at trial t was computed by setting pi(t ) in Eq. 3 to
0.5 and then using the identical maximum log-likelihood proce-
dure via Eqs 4 and 5. This model only included one free parameter
for the β temperature parameter in the softmax function. We were
additionally interested in demonstrating that our results could
not be explained by a simple intercept model in which partici-
pants formed expectations about the probability of their partner
reciprocating based on their cyberball interactions, but then did
not update these beliefs. This no learning initialization model (NL
Init) was formulated similarly to the NL Model, but participants’
beliefs θ about the probability of each partner i reciprocating at
time t was estimated separately for each partner by

EVi (t ) = θi (t ) ∗ 1.5 (6)

where θi(t ) is a free parameter constrained between 0 and 1.
This model thus had five free parameters, one for each part-
ner type (n= 4) and a temperature parameter for the softmax
function. As a more stringent control model, we ran an addi-
tional model which combined the initialization model with the
LG learning model (LG Init). This model contained seven free
parameters: two learning rates (Alpha Gain and Alpha Loss),
a temperature parameter for the softmax function (beta), and
four initialization parameters (one for each partner type). We
then used the Akaike Information Criterion (AIC; Akaike, 1974)
which penalizes models for the number of free parameters as
a metric of model fit and compared model fits using paired
t -tests.

Finally, we fit an additional model to examine if participants’
differentially learned from gains or losses as a function of their
interaction partner. This model was formulated almost identically
to Eq. 1 with the exception that we fit separate learning rate and
temperature parameters for each partner i.

pi (t ) = pi (t − 1)+ αgaini ∗max
(
γ− pi (t − 1) , 0

)
+ αlossi

∗min
(
γ− pi (t − 1) , 0

)
(7)

pri (t ) =
e

EVi (t )
βi

e
EVi (t )

βi + e
1
βi

(8)

The parameters estimated from this model were compared using
mixed effects regression from the LME4 package in the R sta-
tistical language allowing for randomly varying intercepts and
slopes. We employed one-tailed hypothesis tests on these para-
meters as we had specific predictions about their directionality. It
should be noted that these types of analyses must overcome noise
compounded from two estimation procedures (i.e., the parameter
estimated from the computational model and also the statistical
model), thus the hypothesis tests are necessarily weaker with this
increased variability.

Identical modeling analyses were conducted on trust game
behavior from the Day 2 behavioral session.

fMRI ACQUISITION AND ANALYSIS
Images were acquired using a 3T Siemens Allegra head-
only scanner. Structural images were collected using a T1-
weighted MPRAGE sequence (256× 256 matrix, FOV= 256 mm;
176. 1-mm sagittal slices). Functional images were acquired
using a single-shot gradient echo EPI sequence (TR= 2000 ms,
TE= 25 ms, FOV= 192 cm, flip angle= 80˚, bandwidth= 2604
Hz/Px, echo spacing= 44) and comprised 35 contiguous oblique-
axial slices (3 mm× 3 mm× 3 mm voxels) parallel to the anterior
commissure-posterior commissure (AC-PC) line. BrainVoyager
QX software (Version 2.2, Brain Innovation, Maastricht, The
Netherlands) was used to preprocess and analyze the imaging data.
Data was preprocessed using: three-dimensional motion correc-
tion (six parameters); slice scan time correction (cubic spline inter-
polation); spatial smoothing, using a three-dimensional gaussian
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filter (8-mm FWHM); voxel-wise linear detrending; high-pass
filtering of frequencies (three cycles per time course). Structural
and functional data of each participant were then transformed
to standard Talairach stereotaxic space (Talairach and Tournoux,
1988).

We conducted a random effects general linear model (GLM),
modeling decisions and outcomes as a function of condition
(good/bad/neutral/lottery). Thus, this model included a total of
27 regressors including: keep and share decision regressors for
each condition type (8), positive and negative outcome regressors
for each condition type (8), a keep regressor for each condition
type (4) during the outcome phase (e.g., corresponding to the
presentation of feedback for participants’ choices to keep and not
share), and seven additional regressors of no interest (six motion
parameters and one regressor indicating missed trials). To investi-
gate outcome related BOLD activation, we conducted a 2 (outcome
type: positive/negative)× 4 (condition: good/bad/neutral/lottery)
whole brain repeated measures ANOVA in BrainVoyager. Similarly,
to characterize BOLD activation during the decision phase, we
conducted a 2 (decision type: keep/share)× 4 (condition) whole
brain repeated measures ANOVA in BrainVoyager. We extracted
mean parameter estimates from clusters showing significant effects
in order to characterize BOLD activity during the outcome phase
of the task. Post hoc t -tests were conducted to further examine sig-
nificant effects, and were corrected for multiple comparisons using
the Sequential Bonferroni Method (Holm, 1979; Rice, 1989).

We also conducted a parametric analysis to examine BOLD acti-
vation that correlated with PE during the outcome phase. Using
trial-to-trial PE values derived from the LG learning models run
on our behavioral data, we constructed two additional random
effects GLMs. First, to generally characterize PE related activation,
we included three regressors: two dummy coded regressors corre-
sponding to the presentation of the decision and outcome phases,
and one parametric PE regressor, collapsed across all conditions.
This model allowed us to search for areas in the brain that para-
metrically tracked with social PE at a trial-to-trial level (Jones et al.,
2011). As noted above, two participants demonstrated behavioral
patterns that contained insufficient variability such that they never
experienced positive outcomes with the bad character. This led to
biased estimation of model parameters – e.g., attempted estima-
tion of αgain for the bad character, which would be inaccurate
given the lack of occurrence of this condition. Thus, these partic-
ipants were excluded from group analysis so as not to unduly bias
model estimates. We constructed a second model both to explore
whether PE related activity varied by condition, and to ensure that
observed PE responses were not due solely to lottery trials. Here
we included two dummy coded regressors corresponding to the
decision and outcome phases, as well as four parametric regressors
corresponding to PE values for each condition (good, bad, neutral,
lottery). We note that very small PE values for some runs of certain
participants led to matrix inversion errors during singular value
decomposition of the design matrix in BrainVoyager. This unfor-
tunately results in an inaccurate estimation of the GLM. As such,
we were forced to exclude several participants’ runs in the second
model (12 runs total; five participants had 1–3 runs excluded for
this reason) in order to ensure that the model was estimated cor-
rectly. For both parametric models, seven regressors of no interest

were included (six motion parameters and one regressor indicat-
ing missed trials). At the group level, we examined one-sample
t -tests of the parametric regressor, which revealed brain areas that
linearly tracked with the model-derived PEs consistently across
participants.

In addition, we probed relationships between PE related activity
and behavioral model parameters (learning rates) via correlations
at the whole brain level. This exploratory analysis revealed areas of
the brain in which BOLD activation was both correlated with our
parametric PE regressor and modulated by subject specific learn-
ing rate parameters as derived from the LG reinforcement learning
models. Using variability in individual differences, this multilevel
moderation analysis allowed us to search for regions of the brain
that were computationally responsible for adapting beliefs from
PEs in the context of gains and losses (i.e., positive or negative PE).
Subject specific learning rate parameters for both gains and losses
were entered as second level regressors within the same model.
Thus, any significant effects associated with one parameter will be
statistically independent from the other. This analytic technique is
similar to that employed by Behrens et al. (2008) and should pro-
vide similar results to studies that have employed dynamic learning
rates (Krugel et al., 2009). To ensure the resulting significant corre-
lations were not driven by outliers, we also used robust regression
(robust package in R with MM estimator) to predict extracted PE
related parameter estimates using the model estimated learning
rate parameters (Chang et al., 2011).

For all imaging analyses, all regressors were z-transformed;
regressors of interest were convolved with a two-gamma hemo-
dynamic response function at the single participant level. All
generated SPMs were thresholded at an uncorrected threshold
of p < 0.001, except for whole brain correlations with model-
derived learning rates, which were thresholded at an uncorrected
threshold of p < 0.005 due to their more exploratory nature. We
corrected for multiple comparisons at the group level using the
Cluster Level Statistical Threshold Estimator plugin in BrainVoy-
ager. This method of correction (Forman et al., 1995; Goebel et al.,
2006) runs a series of Monte Carlo simulations across the whole
brain to assess the probability that observed significant clusters
of activity are not false positives, leading to a corrected thresh-
old of p < 0.05. All maps were corrected using a cluster threshold
of three contiguous voxels (equivalent to 81 mm3) of brain tis-
sue as determined by the plugin, except for maps depicting whole
brain correlations between model parameters and PE related acti-
vation (cluster threshold of seven contiguous voxels, 189 mm3).
Mean parameter estimates were extracted from clusters surviving
correction in all analyses using three-dimensional cluster spreads.

RESULTS: DAY 1
BEHAVIORAL RESULTS: SUBJECTIVE RATINGS
Participants’ experience in the Cyberball game was an important
aspect of our design, as we were interested in whether this would
effectively instill social impressions and manipulate perceptions of
trustworthiness. We collected subjective ratings of trustworthiness
for each partner both after Cyberball (pre-trust game) and at the
end of the fMRI session (post-trust game). A 2 (time: pre/post)× 3
(condition) repeated measures ANOVA revealed a significant
main effect of condition [F (1.458, 24.78)= 15.72, p < 0.001; see
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FIGURE 2 | Subjective ratings and trust game behavior. (A) A 2 (time:
pre/post)×3 (condition) repeated measures ANOVA on subjective ratings
of partner trustworthiness before and after the Trust Game revealed both a
main effect of condition, as well as a significant time× condition interaction.
(B) A one-way repeated measures ANOVA on participants’ trust decisions
indicated a significant main effect of condition. Participants chose to share
significantly less with the bad partner as compared to all other partners and
the amount of time they decided to play the lottery. Participant behavior is
plotted per condition as a function of time (24 trials per condition, binned
into eight bins of three trials each for illustrative purposes).

Figure 2A]. Participants rated the bad partner as significantly
less trustworthy than the good [t (17)= 4.35, p= 0.0004] and neu-
tral [t (17)= 4.05, p= 0.0008] partners. The good partner was
rated as marginally more trustworthy than the neutral partner
[t (17)= 2.08, p= 0.05]. A significant time× condition interaction
also emerged [F (2, 34)= 6.61, p < 0.005]; this was driven by par-
ticipants rating the good partners significantly less trustworthy at
the end of the trust game compared to prior to playing the game
[t (17)= 2.44, p= 0.026; trend after Sequential Bonferroni Correc-
tion], and not significantly different than the neutral partner by
the end of the task [t (17)= 0.44, p= 0.68]. Participants thus did
adjust their perceptions of character trustworthiness by the end
of the experiment, demonstrating some explicit updating of their
initial impressions.

We additionally assessed participants’ subjective perceptions of
how often (e.g., what percentage of time) each partner shared
back with them in the trust game. A one-way repeated measures
ANOVA revealed a significant effect of condition [F (2, 34)= 7.23,
p < 0.003]. Participants believed that the bad partner reciprocated
significantly less than the neutral partner [t (17)= 3.69, p= 0.002],
and marginally less than the good partner [t (17)= 1.94, p= 0.07].

A similar marginal effect was observed for the comparison between
the good and neutral partners [t (17)= 1.94, p= 0.07], with par-
ticipants believing the good partner reciprocated less than the
neutral.

BEHAVIORAL RESULTS: TRUST GAME BEHAVIOR
The focus of this study was to investigate whether initial social
impressions fostered through experience in the Cyberball game
would generalize to influence participants’ decisions to trust and
affect the ability to modify behavior based on subsequent inter-
action outcomes. Results from a one-way repeated measures
ANOVA on the proportion of time participants’ chose to share
with each partner revealed a significant main effect of condition
[F (3, 51)= 7.06, p < 0.001]. Participants demonstrated a strong
propensity to share less with the bad partner as compared to the
good [t (17)= 3.21, p= 0.004], and neutral partners [t (17)= 3.56,
p= 0.002]. Only the bad condition differed from the lottery con-
dition [t (17)= 3.87, p= 0.001]. We note that the relatively high
rate of playing the lottery here suggests a propensity toward risk-
taking behavior in general; this might be reflective of the low stakes
nature of the lottery condition (Prelec and Lowenstein, 1991).
Participants chose to share equally with the good and neutral
partners [t (17)= 0.42, p= 0.68], reflecting their similar subjec-
tive perceptions of these partners. Participants’ behavior is plotted
as a function of time in Figure 2B. These behavioral results thus
suggest that trust game behavior was influenced to a degree by
participants’ initial experience.

BEHAVIORAL RESULTS: MODELING ANALYSIS
The parameters for the computational models were estimated
using maximum log-likelihood and are reported in Table 1. First,
we demonstrate that participants did indeed use PE to learn the
probability of their partner reciprocating their trust as the LG
learning model fit the participants data significantly better than
the NL model, which assumed a fixed 50% reciprocation rate
[t (17)=−4.64, p < 0.001]. Second, while the NL Init Model esti-
mated beliefs about the probability of reciprocating that paralleled
participants overall investment decisions [average values of ini-
tial parameters – Pos= 0.80 (0.23); Neu= 0.80 (0.25); Neg= 0.61
(0.22); Com= 0.86 (0.13)], this model also did not explain the
behavioral data as well as the LG model [t (17)= 3.25, p= 0.004].
Further, a combined LG Init model, which allowed for both partic-
ipants’ initial beliefs to vary and also for belief updating via PE did
not perform as well as the LG Model [t (17)= 2.11, p= 0.05], [aver-
age values of initial parameters – Pos= 0.70 (0.20); Neu= 0.76
(0.13); Neg= 0.65 (0.13); Com= 0.70 (0.20)]. This suggests that
participants did not merely use their initial beliefs based on their
experience in the Cyberball game as the basis for their decisions
in the Trust Game, but rather appeared to use trial-to-trial learn-
ing to update these beliefs based on their iterative experiences.
In addition, we found evidence that the partner type appeared to
differentially influence how participants learned from gains and
losses. A mixed effects regression with randomly varying intercepts
and slopes revealed that participants were more likely to update
their beliefs for the good partner in the context of gains (i.e., αgain)
compared to the neutral and bad partners [β=−0.18, SE= 0.10,
t (17)=−1.77, p < 0.05 and β=−0.21, SE= 0.11, t (17)=−1.95,
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Table 1 | Estimated model parameters for cyberball manipulation.

Mean αgain

(SD)

Mean αloss

(SD)

Mean β

(SD)

Mean AIC

(SD)

NL 0.97 (0.14) 69.74 (3.07)-

NL – Init 0.44 (0.20) 66.18 (5.14)-

LG 0.60 (0.29) 0.06 (0.06) 0.45 (0.26) 63.60 (3.63)*

LG – Init 0.11 (0.18) 0.02 (0.02) 0.13 (0.19) 65.65 (5.81)-

LG – Good 0.68 (0.37)* 0.08 (0.09) 0.44 (0.31) 18.90 (3.08)

LG – Neutral 0.51 (0.33)- 0.06 (0.11)- 0.38 (0.30) 18.59 (2.85)

LG – Bad 0.48 (0.36)- 0.16 (0.26)* 0.39 (0.33) 19.33 (2.21)

LG – Lottery 0.62 (0.35) 0.07 (0.06) 0.48 (0.35) 19.13 (2.77)

NL refers to the No Learning model estimated for each subject, which assumed

a reciprocation rate of 50%. NL – Init refers to the No Learning Initialization

model, which estimated a parameter for each partner reflecting the probability

of their reciprocation. LG refers to the overall Loss Gain reinforcement learn-

ing model estimated for each subject. LG – Init refers to an overall Loss Gain

learning model that allowed for initial beliefs of partner reciprocation to vary.

LG – Good/Neutral/Bad/Lottery reflect parameters from the LG model estimated

separately by condition for each subject. *p < 0.05, -comparison group.

p < 0.05, respectively, one-tailed]. In contrast, participants were
more likely to update their beliefs in the context of losses
(i.e., αloss) for the bad partner compared to neutral partners
[β=−0.10, SE= 0.06, t (17)=−1.74, p < 0.05, one-tailed] and a
non-significant trend for the bad partners compared to good part-
ners and the lottery trials [β=−0.08, SE= 0.06, t (17)=−1.36,
p < 0.1, β=−0.10, SE= 0.07, t (17)=−1.47, p < 0.1, respectively
one-tailed]. There were no significant differences observed for the
β parameters.

NEUROIMAGING RESULTS
We were additionally interested in whether initial social percep-
tions formed via experience may modulate outcome processing
during subsequent trust interactions. An outcome× condition
whole brain ANOVA during the outcome phase of the trust game
revealed a number of clusters of activation demonstrating a main
effect of outcome (see Table 2). Of particular interest was a clus-
ter of activation in the right ventral caudate nucleus (x, y, z = 8,
19, 3) which extended slightly into the subgenual anterior cingu-
late cortex (sgACC). This cluster demonstrated increased BOLD
responses when receiving positive compared to negative outcomes
[t (17)= 5.42, p= 0.00005; see Figure 3]. A cluster of activity
additionally emerged in the right putamen (x, y, z,= 23, 4, −6)
demonstrating a main effect of outcome and showed the same
positive > negative response.

We observed a main effect of condition (see Table 2) in a
cluster within the midbrain (x, y, z =−7, −11, −12). BOLD
responses here were more positive when processing outcomes
from interactions with the neutral partner compared to the good
[t (17)= 6.02, p= 0.00001] and bad [t (17)= 3.26, p= 0.005] part-
ners. Midbrain BOLD responses were also more positive when
processing outcomes with the bad as compared to the good char-
acter [t (17)= 2.28, p= 0.04; trend after Sequential Bonferroni
Correction]. A main effect of condition additionally emerged
in middle frontal gyrus (x, y, z = 47, 46, −3). This cluster

demonstrated increased BOLD responses during outcomes experi-
enced after interactions with the bad partner compared to the good
[t (17)= 3.23, p= 0.005] and neutral [t (17)= 2.67, p= 0.016] part-
ners. No differences were observed in middle frontal gyrus BOLD
responses between the good and neutral partners [t (17)= 0.30,
p= 0.77]. No significant interaction effects were observed between
condition and outcome.

For completeness we additionally investigated BOLD responses
during the decision phase of the trust game using a 2 (decision)× 4
(condition) whole brain repeated measures ANOVA. We report
clusters demonstrating significant main effects of decision and
condition in Table 3. However, as our focus was on outcome pro-
cessing as a function of prior direct social experience, we do not
discuss the decision phase results further here.

NEUROIMAGING RESULTS: MODELING ANALYSIS
We sought to characterize whether BOLD activity in putative
reward circuitry was reflecting PE signals that were being used to
update behavior at a trial-to-trial level. Using the PE values gener-
ated from the LG models described above as a parametric regressor,
we note significant clusters of activation in Table 4. Of particu-
lar interest were clusters in right and ventral striatum extending
slightly into sgACC (x, y, z = 5, 13, −3; see Figure 4), left ventral
putamen (x, y, z =−16, 1,−6), and ventral ACC (BA32: x, y, z = 8,
31,−9). To ensure that this effect was not driven by lottery trials,
we conducted an additional analysis in which only PE values for
the social conditions were included (see Table 5).

These results confirm the role of the ventral striatum in process-
ing PE computations in the context of social learning (Jones et al.,
2011) consistent with previously reported PE findings in non-
social domains (O’Doherty et al., 2003, 2004; Daw et al., 2011). We
further probed PE activation as a function of condition in these
corticostriatal regions by entering extracted parameter estimates
into one-way repeated measures ANOVAs. No significant effects
emerged in the ventral striatum/sgACC, left ventral putamen, or
ventral ACC.

NEUROIMAGING RESULTS: MODULATION OF PREDICTION ERROR BOLD
BY MODEL-DERIVED LEARNING RATES
To further characterize how participants updated their beliefs, we
conducted an exploratory analysis in which we searched for areas
of the brain responsible for adapting beliefs based on PE in the con-
text of gains or losses. Specifically, we looked for neural regions
which were positively associated with the parametric PE regressor
and were further moderated by individual variability in partici-
pants’ learning rates as estimated by the model fitting procedure.
Larger learning rate values indicate a greater weighting of PEs
(i.e., when outcomes differ from expectations) when participants
are updating their beliefs. In other words, PEs will lead to larger
changes in trial-to-trial beliefs when learning rates are high and
will result in lower changes in learning when learning rates are
low. Thus, any regions that emerged in this analysis would likely be
computationally involved in dynamically adapting beliefs based on
positive or negative outcomes. Overall, participants demonstrated
a behavioral bias toward updating behavior more readily from
gains than losses. We conducted whole brain correlations between
participant specific learning rates for gains and losses and BOLD
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Table 2 | Regions showing main effects of outcome and condition in a 2 (outcome type)×4 (condition) whole brain ANOVA.

Region of activation Brodmann area (BA) Laterality Talairach coordinates # Voxels (mm3) F -stat

x y z

MAIN EFFECT OF OUTCOME

Inferior temporal gyrus BA20 R 53 −17 −30 382 25.70

Inferior frontal gyrus BA47 L −25 28 −21 216 33.18

Inferior temporal gyrus BA20 R 50 −35 −15 687 34.95

Fusiform gyrus BA37 L −46 −59 −15 586 26.27

Middle temporal gyrus BA21 L −52 −38 −12 383 23.77

Putamen L −16 1 −6 151 20.12

Putamen R 23 4 −6 692 28.96

Lingual gyrus/cuneus BA18/17 L −19 −71 3 12269 68.46

Caudate nucleus R 8 19 3 2477 40.43

Insula L −34 7 3 164 24.17

Cuneus BA18 R 11 −98 6 196 23.25

Cuneus BA17/18 R 5 −83 12 11352 59.17

Superior temporal gyrus BA22 L −46 −38 12 185 24.65

Inferior parietal lobule BA7 L −28 −59 33 228 23.46

Pre central gyrus BA6 L −52 −2 30 147 26.01

Posterior cingulate/precuneus BA31 L −4 −41 36 276 20.41

Precuneus BA7 L −13 −65 36 151 20.83

Inferior parietal lobule BA40 R 41 −59 45 521 20.29

Middle frontal gyrus/precentral gyrus BA6/4 R 23 10 54 292 22.69

MAIN EFFECT OF CONDITION

Middle frontal gyrus BA47/10 R 47 46 −3 206 9.35

Midbrain L −7 −11 −12 192 10.54

Cingulum L −13 34 15 89 8.25

activation corresponding to the PE regressor. We note that this
regressor contained both positive and negative PE values. Signifi-
cant positive correlations were observed between PE related BOLD
responses and the αloss learning parameter in regions denoted in
Table 6 and illustrated in Figure 5, including two portions of infe-
rior frontal gyrus (BA47: x, y, z =−37, 34, 0; BA45: x, y, z =−49,
19, 9), as well the insula (x, y, z =−40,−2, 12) superior temporal
gyrus (BA22/42: x, y, z =−46,−26, 9) and cingulate cortex (BA24:
x, y, z = 8,−8, 42).

We also observed a significant correlation between PE related
BOLD responses and parameters for αgain in a region border-
ing superior/medial frontal gyrus (BA10: 11, 67, 6). These results
suggest that at the time of experienced PEs, BOLD activation in
these regions was moderated by the extent to which participants
used losses and gains respectively to update their beliefs. To ensure
that outliers were not driving these effects, we performed a robust
regression using parameter estimates for PE related BOLD activity
extracted from the clusters identified here and model estimated
learning rates. The results for the correlations with αloss remained
significant; the results for the correlation with αgain were reduced
to a trend.

RESULTS: DAY 2
BEHAVIORAL RESULTS: SUBJECTIVE RATINGS
Similar to the results from Day 1, a 2 (time)× 3 (condition)
repeated measures ANOVA using ratings both before and after

the trust game revealed a significant main effect of condition
[F (2, 34)= 65.04, p < 0.001] such that participants rated the bad
partner as significantly less trustworthy than both the good
[t (17)= 8.04, p < 0.001] and neutral [t (17)= 6.28, p < 0.001].
A significant time× condition interaction [F (1.33, 22.60)= 8.82,
p < 0.005] also emerged such that participants’ ratings of the good
[t (17)= 3.06, p= 0.007] and bad [t (17)= 2.70, p= 0.015] part-
ners changed significantly, demonstrating explicit awareness of
the notion that character behavior in the trust game was not in
line with initial perceptions, replicating previous work (Delgado
et al., 2005a). An additional one-way repeated measures ANOVA
on participants’ subjective perceptions of partner reciprocation
rates in the trust game revealed no overall effect of condition
[F (2, 34)= 1.69, p < 0.3].

BEHAVIORAL RESULTS: TRUST GAME BEHAVIOR
Participants’ decisions to share or play the lottery during the
follow-up trust game were entered into a one-way repeated
measures ANOVA. Results (see Figure 6) indicated a signif-
icant effect of condition [F (3, 51)= 9.34, p < 0.001]. In line
with results from Day 1, this effect was driven by partic-
ipants choosing to share less often with the bad character
as compared to the good [t (17)= 4.22, p < 0.001] or neutral
[t (17)= 3.97, p= 0.009] partners. No differences were observed
between choices to share with the good and neutral con-
ditions, however [t (17)= 1.39, p= 0.18], and again, only the
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FIGURE 3 | Main effect of outcome. (A) A 2 (outcome type:
positive/negative)×4 (condition) repeated measures whole
brain ANOVA revealed a main effect of outcome in
corticostriatal circuitry, including the right ventral caudate

nucleus (x, y, z =8, 19, 3). (B) Extracted mean parameter
estimates from this ventral striatum cluster revealed increased
BOLD responses to positive compared to negative outcomes,
irrespective of condition.

Table 3 | Regions showing main effects of decision and condition in a 2 (decision type)×4 (condition) whole brain ANOVA.

Region of activation Brodmann area (BA) Laterality Talairach coordinates # Voxels (mm3) F -stat

x y z

ME of decision

Occipital cortex BA 18 R 20 −74 −6 16009 72.97

Cerebellum/fusiform gyrus BA37 R 26 −44 −12 2401 40.94

Post central gyrus BA1/2 R −40 −26 57 1059 23.91

ME of condition L

Uncus BA28/36 32 −2 −30 91 8.51

Cerebellum 26 −47 −30 100 7.41

Brainstem R 8 −38 −30 239 8.94

Midbrain R 5 −14 −24 390 10.90

Cerebellum R −19 −29 −21 292 9.34

Fusiform gyrus BA37 R −28 −41 −12 1144 13.36

Optic radius L −31 −20 −3 576 9.72

Inferior temporal gyrus BA37 L −58 −53 −3 665 9.25

Middle temporal gyrus BA21 L −61 −11 −3 630 11.94

Thalamus L −7 −2 3 1951 10.39

Medial occipital gyrus BA19 L −52 −77 6 407 8.46

Inferior frontal gyrus BA44/45 L −52 22 15 254 9.07

Occipital-frontal fasciculus L 20 1 24 455 10.94

Paracentral lobule BA7 L 8 −35 54 83 7.40

Table 4 | Regions correlating with prediction error signals (all conditions).

Region of activation Brodmann area (BA) Laterality Talairach coordinates # Voxels (mm3) F -stat

x y z

Inferior temporal gyrus BA37 R 56 −56 −15 275 4.36

Anterior cingulate cortex BA32 R 8 31 −9 173 4.43

Putamen L −16 1 −6 643 5.12

Ventral striatum R 5 13 −3 3150 5.24

Cuneus/lingual gyrus BA17/18 L −10 −77 15 6835 6.75

Cuneus BA18 R/L 2 −86 12 5659 6.82
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bad condition differed from the lottery condition [t (17)= 3.67,
p= 0.002].

BEHAVIORAL RESULTS: MODELING ANALYSIS
The parameters for the computational models were again esti-
mated using maximum log-likelihood and can be found in Table 7.
Overall, the modeling results for the instructed learning par-
adigm were highly similar to those of the Cyberball manipu-
lation. The LG model was a better account of the behavioral
data then both the NL and the NL Init models [t (17)=−4.46,
p < 0.001], [t (17)=−3.15, p= 0.006] respectively, and also the
LG Init model [t (17)= 2.22, p= 0.04]. These results suggest that
participants indeed learned from PE and that their behavior

FIGURE 4 | Prediction error BOLD responses. Model-derived trial-to-trial
prediction error (PE) values were entered into a random effects General
Linear Model in BrainVoyager as a parametric regressor. BOLD responses
correlating with the PE regressor are observed in corticostriatal circuitry,
including ventral striatum (x, y, z =5, 13, −3) and ventral anterior cingulate
cortex (x, y, z =8, 31, −9).

cannot be simply explained by their initial expectations. Partic-
ipants estimated beliefs followed their overall investment ratios
for both the NL Init model [Pos= 0.88 (0.13), Neu= 0.82 (0.16),
Neg= 0.58 (0.23), Com= 0.84 (0.24)] and also the LG Init
model [Pos= 0.77 (0.13), Neu= 0.64 (0.17), Neg= 0.65 (0.19),
Com= 0.77 (0.12)]. A mixed effects regression with randomly
varying intercepts and slopes revealed that participants were more
likely to update their beliefs for the good partner in the con-
text of gains (i.e., αgain) compared to the bad partners and lot-
tery conditions [β=−0.39, SE= 0.09, t (17)=−4.36, p < 0.05 and
β=−0.19, SE= 0.10, t (17)=−1.87, p < 0.05, respectively, one-
tailed]. An additional model revealed that participants were more
likely to update their beliefs in the context of losses (i.e., αloss)
for the bad partner compared to the good and neutral part-
ners [β=−0.11, SE= 0.06, t (17)=−1.79, p < 0.05, β=−0.12,
SE= 0.06, t (17)=−2.14, p < 0.05 respectively, one-tailed]. Partic-
ipants were more exploratory in their decisions (i.e., β parame-
ter) in the context of the neutral partner compared to the good
and bad partners and lottery conditions [β=−2.68, SE= 1.53,
t (17)=−1.75, p < 0.05, β=−3.70, SE= 1.76, t (17)=−2.10,
p < 0.05, β=−2.60, SE= 1.45, t (17)=−1.79, p < 0.05 respec-
tively, one-tailed].

DISCUSSION
In the current study, we examined the neuro-computational
mechanisms underlying how initial social impressions can influ-
ence subsequent learning experiences in a different domain.
Our results suggest that social impressions of others acquired
through direct social experience can bias subsequent learn-
ing and decision-making, particularly when that experience is
negative. Consistent with extant work, we found that process-
ing social outcomes recruits corticostriatal reward circuitry. In
addition, learning from social outcomes appears to utilize the
same PE driven learning system located in the ventral stria-
tum implicated in simpler non-social associative learning tasks.

Table 5 | Regions correlating with prediction error signals (social conditions only).

Region of activation Brodmann area (BA) Laterality Talairach coordinates # Voxels (mm3) F -stat

x y z

Cerebellum L −22 −65 −18 424 5.54

Inferior temporal gyrus BA20 R 53 −35 −15 918 7.64

Fusiform gyrus BA18 R 26 −89 −15 263 5.41

Basal forebrain R 8 1 −12 463 5.27

Putamen L −16 1 −6 672 5.26

Insula L −37 −11 0 113 4.73

Caudate nucleus R 5 16 0 1403 5.30

Putamen/white matter L −22 19 3 1447 6.00

Middle occipital gyrus BA19 L −46 −80 12 195 5.21

Middle temporal gyrus BA39 R 47 −68 15 301 4.98

Posterior cingulate/cuneus BA31 R 5 −65 15 4520 8.64

Posterior cingulate/cuneus BA31 L −7 −68 15 5169 8.24

Superior occipital gyrus BA19 L −37 −83 30 168 5.08

Inferior parietal lobule BA40 L −58 −41 42 597 4.79

Middle frontal gyrus BA6/8 L −28 4 48 283 4.69
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Table 6 | Regions active in a whole brain correlation between prediction error BOLD responses and learning rates for losses (αloss).

Region of activation Brodmann area (BA) Laterality Talairach coordinates # Voxels (mm3) r -value

x y z

Inferior temporal gyrus BA20 L −52 −32 −15 1076 0.83

Brainstem/midbrain L −1 −17 −3 361 0.76

Inferior frontal gyrus BA47 L −37 34 0 2008 0.84

Inferior frontal gyrus/precentral gyrus BA44 L −49 19 9 1170 0.79

Superior temporal gyrus BA22/42 L −46 −26 9 446 0.77

Insula L −40 −2 12 839 0.83

Cingulate gyrus BA24 R 8 −8 42 752 0.76

FIGURE 5 | Modulation of prediction error BOLD responses by subject
specific learning rates. Subject specific learning rates for losses (αloss)
significantly modulated BOLD responses at the time of experienced
prediction errors during the trust game in regions including (A) cingulate
cortex, (B) inferior frontal/precentral gyrus, insula, and superior temporal

gyrus. Scatter plots for illustrative purposes depict the relationship
between the mean parameter estimates of BOLD activation that
parametrically varies with model estimated prediction error values and
model estimated learning rates for losses in the (C) cingulate and
(D) insula.

Interestingly, initial impressions appear to bias how people
learn from feedback in social contexts, such that learning is
facilitated when feedback is consistent with initial impressions
(i.e., learning from losses when playing with a bad partner

and learning from gains when playing with a good partner).
These results demonstrate how a decision neuroscience frame-
work can be employed to understand the dynamics of social
learning.
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FIGURE 6 | Subjective ratings and trust game behavior (Day 2). (A) A 2
(time: pre/post)×3 (condition) repeated measures ANOVA on subjective
ratings of partner trustworthiness before and after the Trust Game
paralleled results from the Day 1 session: a main effect of condition and a
significant time× condition interaction emerged. (B) A one-way repeated
measures ANOVA on participants’ trust decisions also mirrored results from
the Day 1 session, showing a significant main effect of condition.
Participants chose to share significantly less with the bad partner as
compared to all other partners and the amount of time they decided to play
the lottery. Participant behavior is plotted per condition as a function of time
(24 trials per condition, binned into eight bins of three trials each for
illustrative purposes).

Forming social impressions through direct social experience
effectively instilled perceptions of others. Participants differen-
tially rated their partners according to their perceived personalities,
which were effective in guiding subsequent trust game behav-
ior; this was most robust with the bad partner, as participants
chose to invest much less often in this condition. It is possible that
the initial negative experience in Cyberball with the bad partner
was perceived as more salient potentially due to a sense of feel-
ing excluded. Cyberball has often been used in investigations of
social exclusion (Williams et al., 2000; Eisenberger et al., 2003).
While the good partner was rated as more trustworthy than the
neutral, participants may have felt included by both partners in
Cyberball, which may contribute to similar patterns of decision-
making in the trust game. An alternative interpretation here is
that the neutral partner may have been perceived as the most fair
in Cyberball, due to throwing equally to the participant and the
control character on the screen. If the neutral partner was indeed
perceived as most fair, this may underlie the equivalent overall
pattern of trust decisions with the good and neutral partners in

Table 7 | Estimated model parameters for instructed learning

manipulation.

Mean αgain

(SD)

Mean αloss

(SD)

Mean β

(SD)

Mean AIC

(SD)

NL 1.00 (0.00) 70.96 (1.79)-

NL – Init 0.42 (0.12) 65.70 (6.05)-

LG 0.50 (0.30) 0.08 (0.11) 0.43 (0.22) 63.04 (6.00)*

LG – Init 0.16 (0.24) 0.04 (0.04) 0.12 (0.12) 65.52 (6.00)-

LG – Good 0.83 (0.23)* 0.08 (0.11) 0.39 (0.26)- 18.79 (2.66)

LG – Neutral 0.71 (0.35) 0.07 (0.10)- 0.54 (0.29)* 20.14 (2.16)

LG – Bad 0.44(0.35)- 0.19 (0.23)* 0.28 (0.20)- 18.29 (2.70)

LG – Lottery 0.64 (0.34)- 0.10 (0.19) 0.39 (0.26)- 18.84 (2.88)

NL refers to the No Learning model estimated for each subject, which assumed

a reciprocation rate of 50%. NL – Init refers to the No Learning Initialization

model, which estimated a parameter for each partner reflecting the probability

of their reciprocation. LG refers to the overall Loss Gain reinforcement learn-

ing model estimated for each subject. LG – Init refers to an overall Loss Gain

learning model that allowed for initial beliefs of partner reciprocation to vary

LG – Good/Neutral/Bad/Lottery reflect parameters from the LG model estimated

separately by condition for each subject. *p < 0.05, -comparison group.

the trust game. Nevertheless, our behavioral results are consis-
tent with the notion that perceptions of trustworthiness provide
important social signals (Adolphs et al., 1998; Willis and Todorov,
2006; Engell et al., 2007; Todorov et al., 2008) which may help
guide social decision-making. While evidence exists demonstrat-
ing that decisions to trust can rely on implicit biases based on
assumptions of racial group (Stanley et al., 2011), and instructed
knowledge about moral aptitude (Delgado et al., 2005a), we extend
these findings to show that learning about others through direct
social experience can similarly influence trust behavior.

SOCIAL OUTCOMES RECRUIT REWARD CIRCUITRY
Consistent with previous work, corticostriatal reward circuitry
appears to be sensitive to social outcomes. A main effect of out-
come demonstrated increased BOLD responses in regions includ-
ing the striatum and cingulate cortex during positive compared
to negative outcomes across social and non-social (lottery) condi-
tions. A burgeoning body of work implicates corticostriatal reward
circuitry not only in coding the value of primary (e.g., juice) and
secondary (e.g., money) rewards (Delgado et al., 2000, 2004; Knut-
son et al., 2001, 2003; O’Doherty et al., 2002; Elliott et al., 2004;
Zink et al., 2004) but also in assigning value to social rewards (for
reviews see Leotti and Delgado, 2011; Rilling and Sanfey, 2011),
such as approval (Izuma et al., 2010), acceptance (Somerville et al.,
2006), another’s success (Mobbs et al., 2009), and shared rewards
experienced within a social context (Fareri et al., 2012). Evidence
also supports a role for corticostriatal reward circuitry as critical
for maintaining representations of social interaction partners and
their reputation (Delgado et al., 2005a; King-Casas et al., 2005;
Tomlin et al., 2006; Baumgartner et al., 2008; Chang and San-
fey, 2009; Phan et al., 2010). It is interesting to note that our
results somewhat diverge from previous work from our group
(Delgado et al., 2005a), which demonstrated that the striatal BOLD
response to positive and negative trust game outcomes with a
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morally reputable, or “good,” partner was blunted compared to
when interacting with a neutral partner (e.g., no prior knowledge
of reputation). In conjunction with behavioral results indicat-
ing behavioral biases that did not shift over the course of the
experiment, Delgado et al. (2005a) interpreted their results as
instructed knowledge of moral character modulating the ability
of the striatum to typically process positive and negative out-
comes (Delgado et al., 2000, 2005b; O’Doherty et al., 2002; Zink
et al., 2004). We did not observe this blunted striatal differenti-
ation between positive and negative outcomes as a function of
partner. An ROI analysis using a 10 voxel spread around the peak
striatal coordinates reported by Delgado et al. (2005a) confirmed
the divergence between the two studies. Conducting a 2 (con-
dition)× 2 (outcome) repeated measures ANOVA on extracted
parameter estimates when collapsing across the “good” and “bad”
conditions as per Delgado et al. (2005a) revealed no significant
interaction [F (1, 17)= 0.937, p > 0.3]. It is important to note that
the differences in methods of initial learning between the present
study and the study by Delgado et al. (2005a) may underlie the
divergence in results. Nonetheless, the behavioral and neuroimag-
ing results from the experience condition in the present study
suggest that participants here may have been using trust game
outcomes to continually form their impressions of their partners.

SOCIAL LEARNING VIA PREDICTION ERROR
Vital to assessing another as having a trustworthy reputation is
the notion of reciprocity – e.g., will generous behavior be recipro-
cated (van den Bos et al., 2009). Previous work has indicated that
people may treat partner reciprocity as a conditional probability
and appear to learn the trustworthiness of a partner through PE
driven learning (Chang et al., 2010). Consistent with this notion,
we observed evidence that participants can successfully learn the
likelihoods of their partners’ reciprocation rates over time from
trial-to-trial feedback via a reinforcement learning process. Par-
ticipants appeared to have an expectation about the likelihood
of a partner responding and then updated these beliefs following
trust game outcomes using PEs. Similar to non-social PE driven
associative learning (O’Doherty et al., 2003, 2004; Pessiglione et al.,
2006; Schonberg et al., 2007; Daw et al., 2011; Li et al., 2011b), the
computational process of social PE appears to recruit the ventral
striatum in our study. The observed social PE signals in ventral
striatum are consistent with a handful of studies (Hampton and
O’Doherty, 2007; Jones et al., 2011), but diverge from other work
demonstrating social PE to be processed in the STS/TPJ (Behrens
et al., 2008), more putatively implicated in social processes such as
considering intentions of others (Amodio and Frith, 2006; Saxe,
2006). However, all of these studies have employed different tasks,
which may account for these discrepancies.

It is also of interest to note that investigations of trustworthiness
often report involvement of the amygdala; evidence suggests that
this region is important for subserving initial social appraisals of
others based on facial characteristics (Adolphs et al., 1998; Willis
and Todorov, 2006; Engell et al., 2007; Oosterhof and Todorov,
2008; Todorov et al., 2008). The implication here is that the
amygdala may be coding a social approach/avoid signal. This is
consistent with both animal and human findings indicating that
the amygdala is important for both affective valuation in general

(Everitt et al., 1991, 1999; Gottfried et al., 2003; Paton et al., 2006;
Belova et al., 2008),as well as animal models implicating this region
in social processes (Maaswinkel et al., 1996; Ferguson et al., 2001;
Markram et al., 2008; Insel, 2010). We did not observe increases in
amygdala BOLD responses in our task that were specifically sensi-
tive to social partner at the time of decision or outcome. The lack
of amygdala involvement in our trust game task may be accounted
for by the fact that initial impressions/evaluations of trust game
partners were formed prior to the trust game. As such the trust
game experience was used to continually learn reputation, which
evidence suggests is akin to a striatal-based reinforcement learn-
ing process (King-Casas et al., 2005; Phan et al., 2010; Kishida and
Montague, 2012). Additionally, recent findings indicate that the
amygdala and striatum may perform separable contributions to
(Delgado et al., 2008) learning, with the striatum supporting trial-
to-trial updating of action and outcome values via reinforcement
learning, whereas the amygdala may play a more prominent role
in coding surprise and associability of stimuli (Li et al., 2011b).

EVIDENCE FOR CONFIRMATION BIAS
Participants’ initial impressions influenced how they utilized expe-
rienced social PEs to update their behavior, as reflected in partic-
ipants’ estimated learning rates. Participants learned better from
positive outcomes with the good partner compared to the bad part-
ner, whereas the converse was true for losses, with higher learning
rates observed for losses with the bad partner than with the good or
neutral partners. This tendency to rely on information confirming
initial social experience to guide behavior and inform reputation
building is consistent with the notion of confirmation bias. Pre-
vious work suggests that trustworthiness perceptions may evolve
dynamically, accounting for the interaction of implicit judgments
of unknown others and social interaction outcomes (Chang et al.,
2010), and that instructed information in non-social learning sit-
uations biases the ability to incorporate information inconsistent
with said biases (Doll et al., 2009; Li et al., 2011a). While our study
differs in terms of task structure and the models applied from
others investigating social and non-social learning, the present
results support these previous findings in that impressions formed
from direct social experience may continually shape learning in a
new social situation by using information that was consistent with
previous biases.

DETECTION OF SALIENT OUTCOMES
Previous work on confirmation bias in the context of instructed
learning demonstrates that executive control regions such as the
dorsolateral prefrontal cortex (DLPFC) may provide top down
input to override striatal learning weights (Li et al., 2011a). This is
consistent with proposed neural network models (Doll et al., 2009)
and recent work suggesting that genetic variability in the COMT
gene, which provides dopamine to prefrontal regions, may account
for individual susceptibility to the confirmation bias effect (Doll
et al., 2011). Our results do not support the idea that participants
treated Cyberball as an instructed learning task, but do suggest that
social impressions influence subsequent learning to be more sen-
sitive to feedback consistent with these impressions. Interestingly,
in our exploratory imaging analyses, we find that participants’
learning rates for learning from losses significantly correlated with
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BOLD responses at the time of experienced PEs in regions (e.g.,
cingulate cortex and insula) that are involved in salience detection,
monitoring unexpected outcomes, cognitive control, and switch-
ing between default and executive control networks (Bush et al.,
2000; Miller and Cohen, 2001; Sridharan et al., 2008; Menon and
Uddin, 2010). We do note that previous work reports activation
in more rostral and anterior areas of cingulate and insular cortices
than what is reported in the present study. Within this context,
however, our experimental manipulation may have biased partici-
pants to be more vigilant when updating from negative outcomes,
which may have been perceived as more salient. This is consistent
with previous arguments that variability in learning rates may
recruit the cingulate to detect outcome volatility in the learning
environment (Behrens et al., 2007, 2008) and following reversal
learning (Krugel et al., 2009). Previous work investigating social
bargaining in the Ultimatum game implicates the anterior cingu-
late as critical in monitoring expectancy violations (Chang et al.,
2012) which not only bias behavior, but can also result in mem-
ory enhancement for partners that violate expectations (Chang
and Sanfey, 2009). While we were unable to specifically examine
learning rates in the context of positive and negative PEs for each
condition due to an insufficient number of trials, the combina-
tion of our modeling and imaging results suggest a possibility that
initial negative impressions may predispose the brain’s monitor-
ing system to be more sensitive to outcomes consistent with these
impressions. This phenomenon may be more fruitfully explored
in future work.

DIFFERENCES BETWEEN INSTRUCTED AND EXPERIENCED INITIAL
IMPRESSIONS
We attempted to compare initial impressions formed through
direct experience and instructed means, similar to a recent inves-
tigation in the non-social domain (Li et al., 2011a). We found that
initial impressions formed from instructed learning support our
results from the experience learning sessions. Participants shared
less with the bad partner compared to good and neutral part-
ners, but no differences were observed between the proportion
of share decisions with the good and neutral partners. Instructed
learning here seemed to instill similar biases regarding learning
rates, as participants were most sensitive to information consis-
tent with initial impressions: we observed higher learning rates
for positive outcomes with the good partner compared to oth-
ers, and higher learning rates for negative outcomes with the bad
partner compared to others. Though learning rates for the good
(αgain= 0.83) and bad (αloss= 0.19) partners appeared stronger
than those observed during the experience learning session on
Day 1 for the good (αgain= 0.68) and bad (αloss= 0.16) partners,
the LG model did not fit the experience or instructed learn-
ing sessions differently [t (17)= 0.12, p= 0.91], nor were there

overall differences in comparing overall learning rates across the
two sessions {αgain: [t (17)=−0.62, p= 0.91]; αloss: [t (17)= 1.12,
p= 0.28]}. The results for the instructed condition here do differ
slightly from the experience learning condition in that partici-
pants were more exploratory in their decisions with the neutral
partner compared to all others reflected in their estimated β para-
meter; this pattern was absent after forming impressions from
experience, suggesting a difference in the manner in which the
neutral partner was perceived across the two types of manipu-
lations. As noted above, it is possible that the neutral Cyberball
partner may have been perceived as more fair; participants may
have thus formed a more positive impression of this partner after
Cyberball compared to the more uncertain information associated
with the neutral biographical vignette in the instructed condition.

We do note an important point when comparing the two
sessions in the present study. The follow-up instructed learning
session took place up to 1 week after the imaging session. The
trust game paradigms were identical, save for the partners, names,
and method of acquiring impressions. It is possible that due to
prior experience with the trust game, practice, and order effects
may have influenced the follow-up results. Participants may have
relied in some way on this prior experience with the paradigm
to guide behavior here rather than, or in conjunction with, the
initial impressions formed from instructed learning. While the
learning rate comparisons do seem to be in the same direction as
previous findings showing enhanced performance when learning
via instructed means (Li et al., 2011a), it is difficult to make this
claim without a significant comparison in our task. Future work
investigating differences in updating partner reputation after ini-
tial experience or instructed means could better control for these
potential confounds by conducting both tasks within the same
imaging session and controlling for order.

CONCLUSION
Assessing whether another person is trustworthy and subsequently
learning their reputation is critical to survival in a social world.
This lays the foundation for various types of relationships. It is
likely that we will often use initial social knowledge to inform sub-
sequent behavior, whether it be from implicit or assumed biases,
instructed third party information, or prior direct experience.
Here, we demonstrated that social impressions formed from direct
social experience could generalize to a different domain, biasing
decisions to trust and priming sensitivity to subsequent social
outcomes that confirm these impressions, particularly within a
negative social context.
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