27 research outputs found

    DART Mass spectrometry as a potential tool for the differentiation of captive-bred and wild lion bones.

    Get PDF
    In recent years lion bones have been legally traded internationally to Asian markets from captive bred sources in South Africa. There are also indications of increasing instances of illegal international trade in wild lion bones. The existence of parallel captive and wild supplies of lion bone are a cause of law enforcement concern regarding the potential for the laundering of illegally sourced bones through legal trade, and present a problem for the assessment of the conservation impact of wild lion bone trade due to the difficulty of determining what market-share wild and captive-bred lion bones account for. Captive-bred and wild lion bone are visually indistinguishable and no reliable method currently exists for distinguishing them. We present a preliminary study that explores the use of DART mass spectrometry as a method to differentiate between captive-bred and wild lion bones. We find that DART is able to differentiate between a batch of captive-bred South African lion bone and a batch of wild lion bone and suggest that DART mass spectrometry shows strong potential as a tool for the regulation and investigation of lion bone trade. Further testing is needed to prove the suitability of this technique. Therefore, we suggest that further research focuses on testing the capability of DART to differentiate between contemporary wild and captive-bred lion bone originating from South Africa, and attempts to identify chemical markers in bone that can be used as indicators of captive-bred origin

    Application across species of a one health approach to liquid sample handling for respiratory based -omics analysis

    Get PDF
    Abstract Airway inflammation is highly prevalent in horses, with the majority of non-infectious cases being defined as equine asthma. Currently, cytological analysis of airway derived samples is the principal method of assessing lower airway inflammation. Samples can be obtained by tracheal wash (TW) or by lavage of the lower respiratory tract (bronchoalveolar lavage (BAL) fluid; BALF). Although BALF cytology carries significant diagnostic advantages over TW cytology for the diagnosis of equine asthma, sample acquisition is invasive, making it prohibitive for routine and sequential screening of airway health. However, recent technological advances in sample collection and processing have made it possible to determine whether a wider range of analyses might be applied to TW samples. Considering that TW samples are relatively simple to collect, minimally invasive and readily available in the horse, it was considered appropriate to investigate whether, equine tracheal secretions represent a rich source of cells and both transcriptomic and proteomic data. Similar approaches have already been applied to a comparable sample set in humans; namely, induced sputum. Sputum represents a readily available source of airway biofluids enriched in proteins, changes in the expression of which may reveal novel mechanisms in the pathogenesis of respiratory diseases, such as asthma and chronic obstructive pulmonary disease. The aim of this study was to establish a robust protocol to isolate macrophages, protein and RNA for molecular characterization of TW samples and demonstrate the applicability of sample handling to rodent and human pediatric bronchoalveolar lavage fluid isolates. TW samples provided a good quality and yield of both RNA and protein for downstream transcriptomic/proteomic analyses. The sample handling methodologies were successfully applicable to BALF for rodent and human research. TW samples represent a rich source of airway cells, and molecular analysis to facilitate and study airway inflammation, based on both transcriptomic and proteomic analysis. This study provides a necessary methodological platform for future transcriptomic and/or proteomic studies on equine lower respiratory tract secretions and BALF samples from humans and mice

    An optimized comparative proteomic approach as a tool in neurodegenerative disease research.

    Get PDF
    Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability

    Effects of mutations in the effector domain of influenza A virus NS1 protein.

    Get PDF
    OBJECTIVE: The multifunctional NS1 protein of influenza A virus has roles in antagonising cellular innate immune responses and promoting viral gene expression. To better understand the interplay between these functions, we tested the effects of NS1 effector domain mutations known to affect homo-dimerisation or interactions with cellular PI3 kinase or Trim25 on NS1 ability to promote nuclear export of viral mRNAs. RESULTS: The NS1 dimerisation mutant W187R retained the functions of binding cellular NXF1 as well as stabilising NXF1 interaction with viral segment 7 mRNAs and promoting their nuclear export. Two PI3K-binding mutants, NS1 Y89F and Y89A still bound NXF1 but no longer promoted NXF1 interactions with segment 7 mRNA or its nuclear export. The Trim25-binding mutant NS1 E96A/E97A bound NXF1 and supported NXF1 interactions with segment 7 mRNA but no longer supported mRNA nuclear export. Analysis of WT and mutant NS1 interaction partners identified hsp70 as specifically binding to NS1 E96A/E97A. Whilst these data suggest the possibility of functional links between NS1's effects on intracellular signalling and its role in viral mRNA nuclear export, they also indicate potential pleiotropic effects of the NS1 mutations; in the case of E96A/E97A possibly via disrupted protein folding leading to chaperone recruitment

    Extracellular matrix complexity in biomarker studies: a novel assay detecting total serum tenascin-C reveals different distribution to isoform-specific assays

    Get PDF
    Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms
    corecore