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Abstract 

Intracellular actin-based motility of the melioidosis pathogen Burkholderia pseudomallei 

requires the bacterial factor BimA. Located at one pole of the bacterium, BimA recruits and 

polymerises cellular actin to promote bacterial motility within and between cells. Here we 

describe an affinity approach coupled with Mass Spectrometry to identify cellular proteins 

recruited to BimA-expressing bacteria under conditions that promote actin polymerisation. 

We identified a group of cellular proteins that are recruited to the B. pseudomallei surface in 

a BimA-dependent manner, a subset of which were independently validated with specific 

antisera including the ubiquitous scaffold protein Ras GTPase-activating-like protein 

(IQGAP1). IQGAP1 integrates several key cellular signalling pathways including those 

involved in actin dynamics and has been shown to be involved in the adhesion of attaching 

and effacing Escherichia coli to infected cells and invasion of host cells by Salmonella 

enterica serovar Typhimurium. Whilst a direct interaction between BimA and IQGAP1 could 

not be detected using either conventional pulldown or yeast two hybrid techniques, 

confocal microscopy revealed that IQGAP1 is recruited to B. pseudomallei actin tails in 

infected cells and siRNA-mediated knockdown highlighted a role for this protein in 

controlling the length and actin density of B. pseudomallei actin tails.  
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Introduction 

Burkholderia pseudomallei causes melioidosis, a severe invasive infection of humans 

and animals endemic in Southeast Asia and Northern Australia. Human infections are 

acquired by inhalation, ingestion or via abraded skin and may produce a spectrum of disease 

ranging from rapidly fatal septicaemia and acute pneumonia, through chronic or localised 

abscess formation to subacute infections (reviewed in Wiersinga et al.
1
). Relapse and 

latency are common in melioidosis and it is believed that this reflects the ability of B. 

pseudomallei to persist in an intracellular niche and its intrinsic resistance to many classes of 

antibiotic. 

Facultative intracellular pathogens of several bacterial genera have evolved 

mechanisms to enter and exit eukaryotic cells by harnessing the power of actin 

polymerisation. Some species of Burkholderia, Listeria, Mycobacterium, Rickettsia and 

Shigella are propelled in the cytosol and into adjacent cells by polar nucleation of actin, a 

process termed actin-based motility. These bacteria use distinct mechanisms for actin-based 

motility, converging on activation of the cellular Arp2/3 complex by mimicry or recruitment 

of its regulators (reviewed in Stevens et al.
2
) or by mimicking Arp2/3-independent actin 

nucleators such as cellular formins or WH2–domain-containing proteins (reviewed in 

Qualmann and Kessels
3
). In the case of Burkholderia we discovered that this process 

requires BimA
4
, a putative Type V secreted protein that is conserved amongst B. 

pseudomallei isolates in the endemic area
5
. B. pseudomallei BimA influences intracellular 

survival, intercellular spread
6
 and virulence in mice

7
, however the mechanism by which it 

recruits and activates cellular factors to assemble actin is not fully understood. BimA 

homologues of divergent N-terminal amino acid sequence exist in the closely related species 

B. mallei and B. thailandensis
8
. These proteins vary in their composition and number of 

actin-binding WH2 domains, the presence of proline-rich motifs, PDAST repeats and Arp2/3-

binding CA domains implying that different Burkholderia species have evolved distinct 

strategies of actin-based motility
6, 8-9

. For example only B. thailandensis BimA sequesters 

Arp3, consistent with the presence of a unique CA domain
9a

. Despite the variation in 

sequence both B. mallei and B. thailandensis BimA proteins can functionally substitute for 

the actin-based motility defect of a B. pseudomallei bimA mutant
8
. Similarly, BimA proteins 

from B. pseudomallei and B. mallei can restore actin-based motility to a B. thailandensis 
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bimA mutant
9b, 10

. In B. mallei and B. pseudomallei, bimA gene expression is co-regulated 

with the virulence-associated Type VI Secretion System cluster through a two-component 

sensor-regulator VirAG which senses host cytosolic glutathione levels
11

. 

In common with other bacterial pathogens capable of actin-based motility, the Arp2/3 

complex can be detected in B. pseudomallei actin-rich tails
12

. However, we have previously 

shown that B. pseudomallei BimA does not require the Arp2/3 complex to promote actin 

polymerisation in vitro
4, 9a

, a finding confirmed recently by Benanti et al.
9b

 and supported by 

observations by Lu and colleagues in which Arp2/3 depletion failed to inhibit B. 

pseudomallei actin-based motility
10

. Taken together with the findings that N(neural)-WASP 

and the vasodilator-stimulated phosphoprotein (VASP) are not required for actin-based 

motility of B. pseudomallei
12

, and that actin-based motility is insensitive to overexpression 

of the WA fragment of Scar1 (which inhibits actin-based motility of L. monocytogenes, S. 

flexneri & R. conorii)
12

, it may be inferred that B. pseudomallei employs a distinct 

mechanism for intracellular motility to other pathogens. Indeed it has recently been 

suggested that BimA mimics cellular Ena/VASP proteins promoting the polymerisation and 

elongation of actin tails
9b

.  

In a similar manner described for the characterisation of host cell proteins in the actin 

tails of Listeria monocytogenes
13

, we have utilised an affinity purification approach to 

identify the cellular proteins recruited to B. pseudomallei under conditions that promote 

actin assembly in vitro. This relied on overexpression of VirAG to drive surface expression of 

BimA in B. pseudomallei and pulldown of host proteins from a murine splenic extract. Using 

this approach we have identified a number of proteins common to both the actin-rich tails 

of L. monocytogenes and B. pseudomallei, together with a number of proteins uniquely 

associated with the actin tails of B. pseudomallei. Association of a subset of these proteins 

with BimA-expressing bacteria was validated by immunoblotting. Confocal microscopy 

confirmed the recruitment of the cellular cytoskeletal scaffold protein Ras GTPase-

activating-like protein (IQGAP1) to the actin tails of B. pseudomallei in infected cells. Using 

siRNA-mediated knockdown we also demonstrate that IQGAP1 plays a role in regulating the 

actin density and tail length of B. pseudomallei actin tails in infected cells.  
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Materials and methods 

Bacterial strains 

Burkholderia pseudomallei strain 10276 (NCTC 10276) was isolated from a British 

seaman suffering from the chronic form of melioidosis after likely exposure in Bangladesh
14

. 

Strain 10276 and our bimA insertion mutant
4
 were transformed with pBHR2-virAG

11b
 (a kind 

gift from Paul Brett and Mary Burtnick, University of South Alabama, US) by 

electroporation
15

 to give strains 10276 pBHR2-virAG and 10276 bimA::pDM4 pBHR2-virAG. 

Bacteria were cultured in Luria Bertani broth supplemented with appropriate antibiotics at 

37
o
C with shaking for ~16 hours.  

 To generate a bimA deletion mutant, approximately 400 base pairs immediately 

upstream of the bimA gene (annotated as BPSS1492 in the reference B. pseudomallei 

K96243 genome) was amplified using primers P1 

(ATATATCTCGAGACCCGACACGCCGTGGACAGAA) and P2 

(ATATATGGGCCCCATATCGATTGGCAGTGCCGT) using GC advantage polymerase (Takara 

Biotech Europe, Saint-German-en-Laye, France) following the manufacturer’s instructions. 

Genomic DNA from strain NCTC 10276 was used as template. The PCR product was digested 

with XhoI and ApaI and ligated into similarly digested pDM4, an oriR6K sacB positive-

selection suicide replicon
16

. The resulting plasmid was designated pDM4-bimA1. Next, 

approximately 540 base pairs downstream of the bimA gene was amplified from 10276 

genomic DNA by PCR using primers P3 

(ATATATGGGCCCTAAGCACCCGCAAACCCCCCCGGGCATC) and P4 

(ATATATAGATCTCAGGCTGCAGAACGCAGGCT). The PCR product was restricted with ApaI 

and BglII prior to ligation with similarly digested pDM4-bimA1. The resulting plasmid was 

designated pDM4-ΔbimA. 

Construction of the B. pseudomallei mutant was performed according to the method 

described by Logue et al.
17

. Briefly, pDM4-ΔbimA was introduced into B. pseudomallei strain 

NCTC 10276 by conjugation from E. coli S17.1λpir. Colonies were selected on LB agar plates 

containing 50µg/ml kanamycin and 50 µg/ml chloramphenicol. Colonies were screened by 

PCR with P1 and P4 primers to detect integration of the plasmid. A B. pseudomallei 10276 

pDM4-ΔbimA merodiploid was next cultured in the absence of selection for the integrated 

plasmid then plated on LA plates lacking NaCl and containing 15% (w/v) sucrose to positively 
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select for a second recombination event involving excision of pDM4 and the bimA allele. 

Resulting colonies were then screened by PCR using flanking primers BimA screen 1 

(GATGTCGCCGACGAAAGCAG) and BimA screen 2 (AGTGGGCGCGATTCTCGCGGCT) for the 

presence of a truncated bimA gene (of around 1Kb) instead of the full length gene (of 

around 2.5Kb). The resulting bimA deletion mutant was designated 10276 ΔbimA. 

 

Preparation of murine splenic lysates 

Spleens were harvested from BALB/c or VM mice at post mortem. Spleens were rinsed 

in ice-cold polymerisation buffer (10mM Tris pH 7.5, 50mM KCl, 2mM MgCl2). 1ml of ice-

cold polymerisation buffer supplemented with protease and phosphatase inhibitors (1mM 

phenylmethanesulfonyl fluoride (PMSF), 2mM Na2VO3, 2mM NaF, 2mM Na pyrophosphate, 

1µg/ml aprotinin, 10µg/ml leupeptin, 1µg/ml pepstatin A) was added per spleen and the 

tissues homogenised. Supernatants were clarified by ultracentrifugation at 100,000x g for 2 

hours at 4
o
C. The clarified supernatants were carefully pipetted and stored at -70

o
C 

between assays. The protein concentration of the murine splenic lysate was determined to 

be ~7mg/ml using a bicinchoninic acid protein assay kit (Thermo Fisher Scientific, 

Cramlington, UK).  

 

Affinity purification of Burkholderia-associated proteins 

Interacting proteins were isolated essentially as described by David et al.
13a

 with some 

modifications. Approximately 1 x 10
9
 bacteria were pelleted and suspended in 1.5ml murine 

splenic lysate supplemented with 5mM ATP and 30mM creatine phosphate. Bacteria were 

incubated for 1 hour at 37
o
C with gentle agitation. Bacteria were washed gently with 1ml 

ice-cold 10mM PIPES pH7.25 containing 40mM KCl, 5mM ATP and 5mM MgCl2. Interacting 

proteins were eluted from the bacterial surface using 0.5ml 10mM PIPES pH7.25 containing 

1M KCl, 5mM ATP and 5mM MgCl2. After repeating the elution, the eluate was filter-

sterilised by passing through a 0.2µm membrane filter before concentrating the proteins 

using 30 µl StrataClean resin (Agilent Technologies UK Ltd., Stockport, UK). Resin were 

suspended in Laemmli sample treatment buffer containing 2% (v/v) β-mercaptoethanol. 

After incubation at 95
o
C for 10 minutes, samples were separated by SDS-PAGE using a 4-

15% gradient gel. After electrophoresis bands were stained using a SilverSnap kit following 
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the manufacturer’s instructions (Thermo Fisher Scientific, Cramlington, UK). Bands were 

excised and subjected to LC-MS/MS. 

 

LC-MS/MS 

Gel slices were destained with 15mM potassium ferricyanide/50mM sodium 

thiosulphate for 5 minutes, reduced with 10mM DTT/100mM ammonium bicarbonate for 30 

minutes and alkylated with 55mM iodoacetamide/100mM ammonium bicarbonate for 20 

minutes. Gel slices were washed with 100mM ammonium bicarbonate and dehydrated with 

100% (v/v) acetonitrile. Proteins were digested with 6 ng/ml trypsin/50mM ammonium 

bicarbonate for 5 hours at 37
o
C and peptides were extracted in 1% (v/v) formic acid/2% 

(v/v) acetonitrile followed by 50% (v/v) acetonitrile. LC-MS/MS analysis of peptides were 

performed on a nanoAcquity UPLC system coupled to Q-Tof Premier Mass Spectrometer 

(Waters Corporation, Milford, Massachusetts, USA). Tryptic peptides were desalted and 

concentrated on a C18 TRAP column (180µm x 20mm, 5µm Symmetry, Waters), for 3 

minutes at 10µl/ minute and resolved on a 1.7µm BEH 130 C18 column (100µm x 100mm, 

Waters Corporation) using a Waters Corporation nanoAcquity UPLC. Peptides were eluted at 

400 nl/ minute with a linear gradient of 0-50% (v/v) acetonitrile/ 0.1% (v/v) formic acid over 

30 minutes, followed by 85% (v/v) acetonitrile/ 0.1% (v/v) formic acid for 7 minutes. Eluted 

peptides were analysed on a Q-Tof Mass Spectrometer in ‘data directed’ acquisition mode, 

where an MS survey scan was used to automatically select double and multiple charged 

peptides for further MS/MS fragmentation. From each survey scan up to three of the most 

intense peptides were selected for fragmentation. MS/MS collision energy was dependent 

on precursor ion mass and charge state. A reference spectrum was collected every 30 

seconds from the Glu-fibrinopeptide B (785.8426 m/z), introduced via a reference sprayer. 

The raw mass spectral data was processed with ProteinLynx Global Server 2.3 (Waters 

Corporation) to generate peaklist files. The mass accuracy of the spectra was further 

corrected by using the reference spectra from Glu-fibrinopeptide B. The resulting peaklist 

files were searched against a locally installed protein sequence database (5855 entries) of 

the B. pseudomallei reference strain K96243 and mouse International Protein Index (IPI) 

database
18

 using Mascot ver. 2.3 (Matrix Science, London, UK). Precursor and fragment ion 

mass tolerance were set to +/- 100 ppm and +/- 0.1 Da respectively. Trypsin specificity was 

Page 7 of 36

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

 

used for allowing up to one missed cleavage. Carbamidomethylation of cysteines and 

oxidation of methionines were selected as fixed and variable modifications respectively. The 

interpretation and presentation of MS/MS data was performed according to published 

guidelines
19

. 

 

Immunoblotting of bacterial and affinity-purified host proteins 

Protein samples were denatured by heating to 95
o
C for 5 minutes in Laemmli buffer 

containing a final concentration of 1% (v/v) β-mercaptoethanol. Proteins were resolved by 

SDS-PAGE and transferred to PVDF or nitrocellulose membranes using a semi-dry transfer 

system (Bio-Rad, Hemel Hempstead, UK). Membranes were then blocked and incubated 

sequentially with primary antibodies at a concentration of 0.5-1 µg/ml followed by species-

specific antibodies conjugated with horseradish peroxidase (for standard ECL detection, GE 

Healthcare, Chalfont St. James, UK) or fluorescently labelled secondary antibodies (α-rabbit 

IgG DyLight
800

, Cell Signalling Technology, Leiden, The Netherlands), followed by detection 

using a Biosciences Odyssey infrared imaging system (LI-COR Biosciences, Cambridge, UK). 

Primary antibodies used in immunoblotting were: mouse anti-BimA monoclonals AF8, FB5 

and FG11
4
; rabbit anti-BopE

20
; mouse anti-B. pseudomallei capsule (a kind gift from Dstl, 

Porton Down, UK
21

); goat anti-actin (Source Bioscience, Nottingham, UK); goat anti-IQGAP1 

(Abcam, Cambridge, UK); rabbit anti-IQGAP1 (Insight Biotechnology, Wembley, UK); rabbit 

anti-vinculin (Source Bioscience, Nottingham, UK); rabbit anti-HSP90 (Source Bioscience, 

Nottingham, UK) and rabbit anti-L-Plastin (Source Bioscience, Nottingham, UK). 

 

Cell infection, siRNA knockdown and fluorescence microscopy 

HeLa cells were cultured on sterile glass coverslips and infected at a multiplicity of 

infection (MOI) of ~100 essentially as described in Sitthidet et al.
6
. At the indicated time 

points post-infection coverslips were rinsed with phosphate-buffered saline (PBS) and 

incubated for a minimum of 16 hours in PBS containing 4% (w/v) paraformaldehyde before 

staining for confocal microscopy. Coverslips were treated with 0.5% (v/v) Triton-X100 in PBS 

for 15 minutes to permeabilise infected cells, blocked for 30 minutes in 0.5% (w/v) BSA in 

PBS and then sequentially incubated in 0.5µg/ml primary and fluorescently labelled 

secondary antibodies or cell stains as indicated in figure legends. Primary antibodies used in 

Page 8 of 36

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

fluorescence microscopy: mouse anti-BimA AF8, FB5 and FG11
4
; mouse anti-B. pseudomallei 

lipopolysaccharide (LPS) (Camlab, Cambridge, UK); rabbit anti-IQGAP1 (Insight 

Biotechnology, Wembley, UK). Actin filaments were stained with Phalloidin Alexa Fluor
488

 

(Life Technologies Ltd., Paisley, UK). Images were captured using a Leica Microsystems 

(Milton Keynes, UK) LSM710 confocal scanning microscope and Zen 2011 software (Carl 

Zeiss Ltd., Cambridge, UK). 

To reduce expression of IQGAP1 in HeLa cells, approximately 30,000 cells plated per 

well of a 24-well tissue culture plate were transfected with 6pmol Silencer Select IQGAP1 

siRNA duplex (Life Technologies Ltd., Paisley, UK) using Lipofectamine RNAiMax (Life 

Technologies Ltd., Paisley, UK) essentially as described by the manufacturer’s instructions. 

Cells were lysed at 72 hours post-transfection to detect IQGAP1 knockdown by 

immunoblotting. Whilst optimising conditions for IQGAP1 knockdown cells transfected with 

MISSION negative control siRNA (Sigma-Aldrich, Dorset, UK) were used for reference. For 

infection experiments, IQGAP1 siRNA-transfected cells were incubated for 56 hours prior to 

infection with B. pseudomallei strain 10276. Cells were infected at an MOI of ~100 for a 

further 16 hours before fixation and staining for confocal microscopy analysis. 

Images representing maximal projection z-stacks were captured using identical laser 

settings from 3 independent experiments and analysed using Image J software 

(http://imagej/nih.gov/ij/). The maximal calliper function was used to calculate the length of 

tails and the corrected total cell fluorescence (CTCF) formula to determine the intensity of 

actin staining throughout each tail. Data from a total of 100 tails from each condition were 

collated and analysed using a student t-test in GraphPad Prism. 

 

Yeast 2 Hybrid 

A fragment of the bimA gene encoding amino acids 54 to 455 of the BimA protein 

(capable of binding and polymerising actin in vitro) was cloned into pGBKT7 (Clontech, Saint-

Germain-en-Laye, France) to express an in-frame fusion protein with the GAL4 DNA-binding 

domain. The bimA gene was amplified by PCR from 10276 genomic DNA using primers F-

BimA (GCGCGCCATATGAATCCCCCCGAACCGCCGGGC) and R-BimA 

(GCGCGCGAATTCTTAGCGCGCGGTGTCGGTG). The product was purified, digested with NdeI 

and EcoRI, and ligated into similarly digested vector to give pGBKT7-bimA. This plasmid was 
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introduced into Saccharomyces cerevisiae strain AH109 using a standard lithium acetate 

mediated transformation protocol outlined in the Matchmaker GAL4 Yeast Two Hybrid 

System 3 handbook (Clontech, Saint-Germain-en-Laye, France) with selection on SD media 

lacking tryptophan (Clontech, Saint-Germain-en-Laye, France), to give strain AH109 pGBKT7-

bimA. The iqgap1 gene was amplified by PCR from HeLa cell cDNA (AMS Biotechnology Ltd, 

Abingdon, UK) using primers F-IQGAP1 (TTTTCATATGATGTCCGCCGCAGACGAG) and R-

IQGAP1 (TTTTCTCGAGTTACTTCCCGTAGAACTTTTTGTTGA). Similarly the actb gene was 

amplified by PCR from HeLa cell cDNA using primers F-actin 

(TTTTCATATGATGGATGATGATATCGCCG) and R-actin 

(TTTTCTCGAGCTAGAAGCATTTGCGGTGG). PCR products were purified, digested with NdeI 

and XhoI, and ligated into similarly digested pGADT7 (Clontech, Saint-Germain-en-Laye, 

France) to create pGADT7-iqgap1 and pGADT7-actin, encoding in-frame fusion proteins with 

the GAL4 activation domain. All plasmids were verified by sequencing prior to 

transformation into AH109 strains and selection on SD media lacking leucine. The pGADT7-

iqgap1 and pGADT7-actb plasmids were separately introduced into AH109 pGBKT7-bimA by 

lithium acetate with selection on SD media lacking leucine and tryptophan (DDO: Double 

Drop Out media, Clontech, Saint-Germain-en-Laye, France) to give strains AH109 pGBKT7-

bimA pGADT7-iqgap1 and AH109 pGBKT7-bimA pGADT7-actin. 

To identify protein: protein interactions, single yeast colonies from DDO agar plates 

were suspended in 20µl water and 5µl dotted onto SD agar plates lacking leucine, 

tryptophan, adenine and histidine (QDO: Quadruple Drop Out) supplemented with 20µg/ml 

X-α-galactosidase. Plates were incubated at 30
o
C for 24 hours before observing the 

appearance of the colonies. The strains AH109 pGBKT7-bimA pGADT7-iqgap1 and AH109 

pGBKT7-bimA pGADT7-actin were tested alongside yeast strains transformed with positive 

and negative control vectors (pGADT7-T antigen pGBKT7-p53 and pGADT7-T antigen 

pGADT7-Lamin C respectively) supplied with the Matchmaker GAL4 Y2H System 3 (Clontech, 

Saint-Germain-en-Laye, France).   
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Results 

Engineering a Burkholderia pseudomallei strain that constitutively expresses BimA in vitro 

BimA (BPSS1492), a predicted Type V autotransporter protein of Burkholderia 

pseudomallei, is required for actin-based motility of the bacterium in the cytosol of infected 

cells
4, 6

. We have found that BimA expression is below the limit of detection in bacteria 

cultured in common laboratory media (Figure 1a) but detectable from 6 hours post-infection 

by immunoblotting infected cell lysates with antibodies specific to BimA
4
 (Figure 1b). The 

presence of intracellular bacteria in all samples was confirmed by immunoblotting with 

antibody reactive to the B. pseudomallei capsule
21

. In the closely related species B. mallei, 

bimA gene transcription and BimA protein expression is positively regulated by a two-

component system, VirAG, encoded adjacent to the bimA-E genes on chromosome 2
11b

. In 

order to induce BimA expression in LB-cultured bacteria we therefore introduced the 

pBHR2-virAG plasmid constitutively expressing the B. mallei virAG genes
11b

 into strain NCTC 

10276
14

 or our bimA insertion mutant giving strains 10276 pBHR2-virAG and 10276 

bimA::pDM4 pBHR2-virAG. The VirA and VirG proteins of B. mallei and B. pseudomallei share 

99.4% and 99.6% identity respectively and introduction of the pBHR2-virAG plasmid into 

these strains resulted in expression of BimA protein in wild-type bacteria cultured in 

laboratory medium (Figure 1a). Protein loading was confirmed using an antibody against the 

B. pseudomallei Bsa Type III Secretion System effector protein BopE
20

. Localisation of BimA 

on the surface of the 10276 pBHR2-virAG strain was confirmed by confocal microscopy of 

intact bacteria (data not shown). 

 

Isolation of candidate host cell proteins involved in actin-based motility of B. 

pseudomallei 

Having established an in vitro system in which B. pseudomallei bacteria were expressing 

BimA, we set out to identify host cell proteins that associated with 10276 pBHR2-virAG 

(BimA-expressing bacteria) and common bacterial proteins released from the bacterial 

surface following elution from 10276 pBHR2-virAG and 10276 bimA::pDM4 pBHR2-virAG. 

Bacteria were incubated with murine splenic lysates under conditions that promote BimA: 

actin binding and actin polymerisation
4
 and interacting proteins eluted and concentrated for 

SDS-PAGE. Following silver staining gel slices were excised and subjected to in-gel trypsin 
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digestion, extraction and LC-MS/MS analysis. A representative silver stained gel is shown in 

Figure 2. Spectra were then separately searched against the mouse International Protein 

Index (IPI) database
18

 and an ‘in-house’ B. pseudomallei K96243 protein database to obtain 

protein identifications. Data were collected for 3 independent experiments with both 

bacterial and host cell proteins identified in the eluted proteins.  

We sought to identify host cell proteins that were solely associated with, or identified at 

a higher frequency with, the BimA-expressing bacteria 10276 pBHR2-virAG compared to the 

bimA mutant strain 10276 bimA::pDM4 pBHR2-virAG. Spectra were screened against the 

mouse IPI database
18

 and protein identifications assigned when the proteins were identified 

in at least two of the three biological replicates. From this analysis a set of 30 host proteins 

were isolated (Table 1). In contrast to a previous study on the proteome of L. 

monocytogenes actin tails
13b

, there was a notable lack of microtubule components, 

intermediate filaments or myosins. The most abundant and commonly isolated proteins 

recruited in a VirAG-dependent manner were those of the actin family, consistent with the 

known actin-binding activity of BimA
4
. Several of the proteins are associated with areas of 

dynamic actin assembly such as membrane ruffles and cell junctions, or acting as scaffolds 

to integrate signalling complexes. A selection of host cell proteins recruited by BimA-

expressing bacteria contained FERM domains, which are known to localise at the interface 

between the cytoskeleton and the plasma membrane. The scaffold proteins Talin, 14-3-

3 protein zeta/delta and IQGAP1 were identified, as were components of the Arp2/3 

complex (specifically subunits 1b, 2 and 4), previously described as being in the actin tails of 

B. pseudomallei
12

. In addition to actin, we identified several F-actin binding proteins 

implicated in stabilising F-actin networks through bundling and cross-linking activities (α-

actinins 1 and 4, Filamin A, Spectrin/ fodrin, Vinculin, Tropomyosin, Plastin-2/ L-Plastin, 

Transgelin), several F-actin capping proteins (Spectrin/ fodrin, ERM proteins, Macrophage 

capping protein, CapZ) and an actin-depolymerising factor (ADF) in the form of cofilin. We 

also identified the proteins WD repeat-containing protein 1 (AIP1) and serine/ threonine 

phosphatase 2A, known regulators of cofilin activity. 

Several B. pseudomallei proteins were consistently identified in eluates from both wild-

type and bimA mutant bacteria (Table 2), including the Type VI secreted protein Hcp 

(BPSS1498), a number of chaperone proteins and proteases. A number of the B. 
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pseudomallei proteins identified in this study have previously been identified in the B. 

pseudomallei outer membrane proteome
22

, the total secretome
23

 or as surface proteins by 

surface labelling approaches
24

, including the molecular chaperones GroEL (BPSL2697 and 

BPSS0477), GroES (BPSL2698), DnaK (BPSL2827) and the transcription/ translation factors 

Tuf (BPSL3215) (labelled OM in Table 2). Several have also been shown to be recognised by 

the sera of convalescent melioidosis patients (labelled I in Table 2)
24-25

. The remainder of 

proteins ranged in function from metabolic enzymes involved in glycolysis, amino acid 

metabolism and the TCA cycle to RNA polymerase subunits. These may represent 

particularly abundant proteins of the bacteria released upon cell lysis or proteins contained 

within outer membrane vesicles (OMVs). OMVs have recently been reported to have 

protective efficacy against pulmonary melioidosis and B. pseudomallei-induced sepsis
26

, 

however a proteomic analysis of the contents of such OMVs has yet to be described. 

 

Validation of the dataset  

The dataset described in Table 1 was validated by immunoblotting of independently-

generated samples for a subset of host cell proteins. An equal volume of eluted protein 

generated from identical treatment of similar numbers of bacteria was probed in each 

instance. Proteins that were identified in all 3 experiments, with high MASCOT scores, and 

were novel when compared to proteins involved in Listeria or Shigella actin-based motility 

were confirmed (HSP90 and IQGAP1) (Figure 3). We also chose to validate one of the 

proteins identified in only 2 experiments with a moderate MASCOT score (vinculin) or 

identified in all 3 experiments with a low MASCOT score (L-Plastin) (Figure 3). As a positive 

control the recruitment of actin to BimA-expressing bacteria was also verified (Figure 3). All 

chosen targets were detected in murine splenic lysate and samples derived from bacteria 

expressing BimA in vitro (10276 pBHR2-virAG), and were absent from those samples lacking 

BimA (10276 bimA::pDM4 pBHR2-virAG). 

 

IQGAP1 is present in actin tails formed by intracellular B. pseudomallei 

The Ras GTPase-activating-like protein IQGAP1 is a ubiquitously expressed scaffold 

protein that integrates multiple host signalling pathways including actin cytoskeleton 

dynamics, cell cycle and cell adhesion. To date this protein has not been shown to be 
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involved in the actin-based motility of intracellular bacteria, although it has been shown to 

be involved in entry of Salmonella into host cells and for actin pedestal formation of 

attaching and effacing E. coli pathotypes to the apical surface of cells (reviewed by Kim et 

al.
27

). Our data implied that in contrast to Listeria and other pathogens that display actin-

based motility, IQGAP1 may be a component of B. pseudomallei actin tails. Indeed this was 

supported by immunocytochemistry and confocal microscopy which revealed the presence 

of IQGAP1 throughout the tails of B. pseudomallei 10276 at 16 hours post-infection of HeLa 

cells (Figure 4(a)-(c)). In agreement with a recent report by Benanti et al.
9b

, we could also 

elucidate the architecture of the B. pseudomallei actin tail by fluorescent actin staining 

coupled with confocal microscopy, albeit at low resolution (Figure 4(d)). The tails consisted 

of loosely bundled F-actin filaments reminiscent of those described for certain Rickettsia 

species that rely on the formin-like Sca2 autotransporter for actin polymerisation
28

. 

 

Yeast 2 Hybrid analysis detects a direct interaction between BimA and actin but not 

IQGAP1 

Whilst IQGAP1 could readily be detected in the actin tails of all bacteria displaying actin-

based motility in infected cells, we sought to determine if this is through direct interaction 

with the BimA protein using a Yeast 2 Hybrid approach. The Yeast 2 Hybrid assay is a widely 

utilised and sensitive molecular genetic approach to detect even weak or transient protein: 

protein interactions in vivo. It relies on the modular nature of transcriptional trans-

activators where the DNA-binding and activation domains can be physically separated and 

expressed as fusions with proteins of interest. If the proteins interact they bring the DNA-

binding and activation domains into close proximity thereby resulting in transcription of 

certain reporter genes. In our Yeast 2 Hybrid system the reporter genes for histidine and 

adenine biosynthesis (which allow growth on media lacking these two amino acids) and α-

galactosidase (which produces blue colonies on media containing X-α-Gal substrate) are 

utilised. We have expressed amino acid residues 54 to 455 of the BimA protein as a DNA-

binding protein fusion protein in the reporter yeast strain AH109 pGBKT7-BimA. When β-

actin is also expressed in this strain as an activation domain fusion protein (AH109 pGBKT7-

BimA pGADT7-actin), the yeast generates blue colonies on media containing X-α-Gal 

substrate but lacking leucine, tryptophan, adenine and histidine (QDO) (Figure 5), indicating 
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an interaction between these two proteins as we have previously described
4
. Conversely, 

introduction of a vector expressing IQGAP1 as an activation domain fusion protein into the 

BimA yeast strain (AH109 pGBKT7-BimA pGADT7-IQGAP1) resulted in growth of the yeast 

strain on QDO media, however the colonies remained white even after extended incubation 

times (Figure 5). Growth on selective media in the absence of detectable α-galactosidase 

activity indicates that these two proteins do not directly interact with each other. Growth 

under these circumstances can be attributed to a low level of intrinsic trans-activation in 

yeast strains harbouring the pGBKT7-BimA plasmid as shown in Figure 5. 

Consistent with the Yeast 2 Hybrid data presented in Figure 5, we were unable to detect 

a direct interaction between BimA and IQGAP1 by conventional pulldown assay using 

affinity-purified glutathione S-transferase (GST)-BimA54-455 and maltose-binding protein 

(MBP)-IQGAP1 fusion proteins expressed by E. coli under conditions previously used to 

detect the direct interaction of actin with BimA
4
 (data not shown). 

 

Effect of IQGAP1 knockdown on actin density and length of BimA-induced actin tails 

Given the presence of IQGAP1 in the tails of B. pseudomallei in infected cells we next 

utilised an IQGAP1 siRNA approach to determine the functional relevance of this host cell 

protein in B. pseudomallei actin-based motility. Transfection of Silencer Select siRNA against 

IQGAP1 into HeLa cells consistently resulted in efficient knockdown of around 70% as 

assessed by IQGAP1 immunoblotting (Figure 6a and b). Following infection of siRNA 

knockdown cells and control non-transfected cells, over 2000 bacteria were imaged from 

each infected cell type across 3 biological replicates. There was no significant difference in 

the proportion of tailing bacteria in either cell type under the assay conditions used (~42%). 

It was evident that bacteria could still form actin tails in the knockdown cells however this 

may be a result of the residual IQGAP1 expression in the cells, or compensation by the 

related IQGAP proteins IQGAP2 or IQGAP3 which are also expressed in this cell type.  

Using Image J software we next measured the length and actin density of tails as 

described in the Methods section. 100 tails from control and siRNA transfected HeLa cells 

across 3 biological replicates were analysed. The data showed a statistically significant 

increase in overall tail length (p=0.0033) with concomitant decrease in actin density 

(p=0.0001) in IQGAP1 knockdown cells compared with control cells (Figure 6c and d). In cells 
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with reduced levels of IQGAP1 tails were significantly longer with a mean length of 20.5µm 

compared to a mean length of 14.8 µm in control cells (Figure 6c). Although longer in length 

the actin density of tails generated in IQGAP1 knockdown cells was lower with a mean signal 

of 1036.0 A.U. compared to a mean signal of 2522.4 A.U. measured for tails in control cells. 

 

Discussion 

Burkholderia pseudomallei is a facultative intracellular bacterium capable of escape 

from the endocytic vacuole into the cytosol of host cells. In common with several other 

bacteria, namely Listeria monocytogenes, Shigella flexneri, Mycobacterium marinum and 

several Rickettsia spp., it is capable of harnessing cellular actin to promote its movement 

within and between host cells by actin-based motility. It is clear that these bacteria have 

evolved several independent mechanisms to utilise cellular actin and accessory proteins for 

actin-based motility. For example L. monocytogenes expresses ActA, a protein which recruits 

the host cell Arp2/3 complex to its surface where it directly interacts with actin and 

stimulates its polymerisation
29

. Conversely certain rickettsial species express Sca2, a protein 

which acts through functional mimicry of eukaryotic formins
28

. We have previously 

characterised the B. pseudomallei encoded protein required for actin-based motility. Known 

as BimA, this predicted Type V auto-transporter protein is expressed on a single pole of the 

bacterium where it recruits cellular actin and stimulates its polymerisation to mediate 

intracellular movement
4, 6

. We and others have shown that this protein can stimulate actin 

polymerisation in vitro in a manner that is independent of other host cell factors such as the 

Arp2/3 complex
4, 9

. Despite localisation of Arp2/3 components to the actin-rich tails of B. 

pseudomallei in infected cells
12

, tail formation does not require the activity of this cellular 

actin nucleation complex since it can be observed in cells depleted of Arp2/3
10

. Whilst it is 

known that actin-based motility of B. pseudomallei does not require Arp2/3, the potential 

involvement of other cellular factors is unclear. 

Here we have used an in vitro affinity approach to identify cellular factors recruited to 

BimA over-expressing bacteria under actin polymerising conditions. We report the 

identification of 30 cellular proteins, including actin, actin-depolymerising factor and 

capping protein, the minimal requirement for polymerisation in the presence of a bacterial 

actin polymerisation factor in vitro
30

. The identification of vinculin and α-actinin is 
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corroborated by the work of Breitbach et al. who demonstrated the presence of these 

proteins in B. pseudomallei actin tails by immunofluorescence microscopy
12

. Whilst α-

actinin is commonly detected in the tails of bacteria that display actin-based motility, 

vinculin has been reported to be absent from R. rickettsii tails
31

. 

In comparison to previous studies, it was notable that our dataset lacked any 

microtubules, intermediate filaments or myosins that were shown to be present in Listeria 

tails
13b

, or VASP or profilin, which have been shown to be components of R. rickettsia actin 

tails
31

 Two proteins that have not previously been associated with actin-based motility of 

intracellular pathogens, HSP90 and IQGAP1, were identified in this analysis and the 

presence of IQGAP1 detected in actin-rich tails formed by B. pseudomallei in HeLa cells. 

IQGAP1 is a ubiquitously expressed scaffold protein that integrates numerous signalling 

pathways and regulates multiple cellular processes. Involved in Salmonella Typhimurium 

host cell invasion and Chlamydophila pneumoniae-induced vascular smooth cell migration, 

IQGAP1 has also been implicated in the adhesion of EPEC to the cell surface and viral 

trafficking and replication of Mu-MuLV (reviewed in Kim et al.
27

). IQGAP1 has been shown to 

interact directly with the EPEC Ibe and Tir proteins and Salmonella T3SS effector protein 

SseI, although the yeast 2 hybrid and pulldown results are not consistent with a direct 

interaction between IQGAP1 and BimA. Indeed, the finding that the protein localises along 

the length of the actin-rich tail in B. pseudomallei infected tails, together with reports that 

IQGAP1 is an actin-binding protein, suggests it is recruited indirectly through its interaction 

with actin filaments
32

. Furthermore we demonstrate that IQGAP1 plays a functional role in 

organising the architecture of the actin tails formed by B. pseudomallei. Indeed siRNA 

mediated knockdown resulted in a significant lengthening of the tails concomitant with a 

reduction in the actin density. This warrants further investigation, as does the role of the 

other validated and candidate host cell proteins in actin-based motility of this fascinating 

bacterial pathogen. 

 

Conclusion 

We have demonstrated a hitherto unknown role for the cellular protein IQGAP1 in 

modulating the length and actin density of actin tails induced by the intracellular bacterial 

pathogen Burkholderia pseudomallei.  
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Figure legends 

Figure 1: Burkholderia pseudomallei BimA expression is not constitutive and can be 

induced by expression of VirAG in trans. (a) Western blot analysis of BimA expression in 

whole cell lysates of bacteria cultured in LB overnight at 37
o
C. Bacterial lysates were probed 

for BimA and BopE (as a protein loading control) using specific antibodies, and show that 

BimA is not expressed by wild-type B. pseudomallei under standard culture conditions. 

Expression in trans of the two component regulator VirAG results in BimA expression. Note 

that approximately 10-fold more 10276 and bimA::pDM4 bacteria (than their pvirAG-

containing counterparts) were loaded onto the protein gel for analysis. (b) Western blot 

analysis of RAW cells infected with wild-type B. pseudomallei and a bimA mutant at an MOI 

of 100 at 3, 6 and 8 hours post-infection. Lysates were probed for BimA and Burkholderia 

capsule (as a protein loading control) using specific antibodies and indicate detection of 

BimA in lysates at the later time points post-infection. 

 

Figure 2: Host cell and bacterial proteins are eluted from the surface of B. pseudomallei 

strains incubated with murine splenic lysate. A representative silver stained SDS-

polyacrylamide gel showing the profile of proteins eluted from 10276 pBHR2-virAG and 

10276 bimA::pDM4 pBHR2-virAG bacteria incubated with murine splenic lysates. The 

abundant presence of actin in the 10276 pBHR2-virAG sample is indicated by the arrow. 

Protein bands from samples from 3 independent experiments were processed for LC-MS/ 

MS analysis. 

 

Figure 3: Independent validation confirms the presence of a subset of host cell proteins in 

eluates from B. pseudomallei strains incubated with murine splenic lysate. Independent 

protein eluates from 10276 pBHR2-virAG and 10276 bimA::pDM4 pBHR2-virAG bacteria 

incubated with murine splenic lysates were prepared and immunoblotted to confirm the 

specific presence of IQGAP1, vinculin, HSP90 and L-plastin in the 10276 pBHR2-virAG 

samples. 5µg and 10µg of total splenic lysate were loaded as positive controls for the 

antibodies. 
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Figure 4: IQGAP1 is recruited to B. pseudomallei actin tails in infected HeLa cells. HeLa cells 

were infected with B. pseudomallei at an MOI of 100 and fixed at 16 hours post-infection for 

visualisation of actin tails by immunohistochemistry and confocal microscopy. 

Representative images of bacteria (blue) and actin (green) are shown in panel (a), and 

bacteria (blue) and IQGAP1 (red) in panel (b). The white arrows indicate areas of co-

localisation of actin and IQGAP1 in bacterial tails. Panel (c) represents a merged image of (a) 

and (b). (d) illustrates the architecture of the actin tails, where the scale bar is 5µm. 

 

Figure 5: BimA and IQGAP1 do not interact in a yeast two-hybrid assay. To identify protein: 

protein interactions, single yeast colonies from SD agar plates lacking leucine and 

tryptophan (DDO: Double Drop Out) were suspended in 20µl water and 5µl dotted onto SD 

agar plates lacking leucine, tryptophan, adenine and histidine (QDO: Quadruple Drop Out) 

supplemented with 20µg/ml X-α-galactosidase. Plates were incubated at 30
o
C for 24 hours 

before observing the appearance of the colonies. The strains AH109 pGBKT7-bimA pGADT7-

iqgap1 (BimA X IQGAP1) and AH109 pGBKT7-bimA pGADT7-actin (BimA X actin) were tested 

alongside yeast strains transformed with positive and negative control vectors (pGADT7-T 

antigen pGBKT7-p53 and pGADT7-T antigen pGADT7-Lamin C, respectively). The blue 

colouration of the yeast indicates a direct interaction between the two proteins, as 

demonstrated by the positive control and BimA X actin strains. White colouration indicates a 

lack of interaction between the two proteins, as demonstrated by the negative control and 

BimA X IQGAP1 strains. 

 

Figure 6: siRNA-mediated knockdown of IQGAP1 in HeLa cells affects B. pseudomallei tail 

morphology. (a) Western blot analysis of HeLa cell lysates from three independent 

experiments. IQGAP1 and actin (as a protein loading control) were detected in lysates 

prepared from cells treated only with transfection reagent (control) and cells transfected 

with 6pmol siIQGAP1 for 72 hours (IQGAP1 siRNA). (b) Quantitation of IQGAP1 protein 

levels in control and IQGAP1 siRNA cells indicates that IQGAP1 expression is reduced by 

~70% in siRNA-treated cells. Control and IQGAP1 siRNA cells were infected with B. 

pseudomallei at an MOI of 100 and fixed at 16 hours post-infection for visualisation of actin 

tails by immunohistochemistry and confocal microscopy. Images were collected from three 
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independent experiments and tail length in µm (c) and actin density in A.U. of phalloidin 

intensity (d) assessed using ImageJ software. 
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Table 1: Host cell proteins isolated from BimA-expressing Burkholderia pseudomallei. 

Gene ID Gene Name Description 

 

Protein Accession 

No. 

 

Protein 

Score 

 

# Unique 

Peptides 

 

Notes 

IPI00131138 flna Filamin A Q8BTM8 104 32 Lm 

IPI00753793 spna2 Spectrin alpha chain/ fodrin alpha chain P16546 176 50 Lm 

IPI00319830 spnb2 Spectrin beta chain/ fodrin beta chain Q62261 79 8 Lm 

IPI00465786 tln1 Talin 1 P26039 91 8 Lm 

IPI00467447 iqgap1 IQ motif containing GTPase activating protein 1, IQGAP1 Q9JKF1 107 49  

IPI00405227 vcl Vinculin Q64727 67 12 Lm 

IPI00118899 actn4 Alpha-actinin-4 P57780 109 31 Lm 

IPI00380436 actn1 Alpha-actinin-1 Q7TPR4 116 38 Lm 

IPI00229080 hsp90ab1 Heat shock protein 90kDa alpha Q71LX8 79 17  

IPI00169731 fermt3 Fermitin family homolog 3/ kindlin 3 Q8K1B8 55 1  

IPI00118892 lcp1 Lymphocyte cytosolic protein 1/ plastin -2/ L-plastin Q61233 58 3 Lm (T-plastin) 

IPI00338302 pgm2 Phosphoglucomutase-2 Q7TSV4 43 2  

* ezr/msn/rdx Ezrin/ Radixin/ Moesin** ** 61 4 Lm (Ezrin) 

IPI00314748 wdr1 WD repeat-containing protein 1/ AIP1 O88342 61 2 Lm 

IPI00110827 acta1 Alpha actin P68134 98 34 Lm 

IPI00125143 arpc1b Actin-related protein 2/3 complex subunit 1b Q91Z25 58 2  

IPI00473320 actb Beta actin-like protein Q3U804 140 117 Lm 

IPI00874482 actg1 Gamma actin P63260 140 121 Lm 

IPI00110850 actb Beta actin P60710 103 34 Lm 

IPI00277930 capg Macrophage-capping protein Q99LB4 96 6  

IPI00830701 tpm1 Tropomyosin 1 P58771 102 11 Lm 

IPI00111556 ppp2cb Serine/ threonine phosphatase 2A catalytic subunit P62715 62 1  

IPI00111265 capza2 F-actin-capping protein subunit alpha-2 P47754 77 1 Lm 

IPI00874728 tpm2 Tropomyosin 2 P58774 102 13 Lm 
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IPI00775844 arpc2 Actin-related protein 2/3 complex subunit 2 Q9CVB6 71 3 Lm 

IPI00230044 tpm3 Tropomyosin 3 Q58E70 88 7 Lm 

IPI00116498 ywhaz 14-3-3 protein zeta/delta P63101 71 6 Lm 

IPI00125778 tagln2 Transgelin 2 Q9WVA4 69 2 Lm 

IPI00138691 arpc4 Actin-related protein 2/3 complex subunit 4 P59999 51 5 Lm 

IPI00890117 cfl1 Cofilin-1 P18760 100 3 Lm 

 

*Peptides matched ezrin (IPI00330862, P26040), moesin (IPI00110588, P26041) and radixin (IPI00308324, P26043)  
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List of murine proteins isolated either solely or at a higher frequency from eluates from 

BimA-expressing bacteria 10276 pBHR2-virAG compared to the bimA mutant strain 10276 

bimA::pDM4 pBHR2-virAG. Proteins were assigned when peptides were isolated in at least 2 

experiments, with a MASCOT score of at least 30, at least one rank 1 peptide, where the 

predicted mass of the protein matched the observed mass and where the reported cellular 

localisation was listed as cytoplasm or plasma membrane. Proteins highlighted in grey and 

shown in bold were isolated in all 3 experiments. Proteins are listed in order of molecular 

weight (highest to lowest) with ‘Lm’ in the Notes column denoting the identification of this 

protein in similar proteomic studies of Listeria monocytogenes tails. 
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Table 2: Burkholderia pseudomallei proteins identified in the samples. 

Gene ID 

Gene 

Name Description 

Protein Accession 

No. 

 

Protein Score 

# Unique 

Peptides 

 

Notes 

bpsl0779 sucC Succinyl-CoA synthetase subunit beta YP_107404.1 88 2  

bpsl1013 ppc Phosphoenolpyruvate carboxylase YP_107641.1 67 4  

bpsl1087 htpG Heat shock protein 90 YP_107709.1 103 4  

bpsl1402 tig Trigger factor YP_108024.1 69 6  

bpsl1405 lon ATP-dependent protease YP_108027.1 96 6  

bpsl2192 aceB Malate synthase YP_108787.1 80 4  

bpsl2270 eno Phosphopyruvate hydratase YP_108866.1 128 3  

bpsl2305 

 

Oligopeptidase A YP_108901.1 117 2  

bpsl2697 groEL Chaperonin GroEL YP_109293.1 157 38 OM, I 

bpsl2698 groES Co-chaperonin GroES  YP_109294.1 169 8 I 

bpsl2827 dnaK Molecular chaperone DnaK  YP_109422.1 107 6 OM, I 

bpsl2953 tktA Transketolase YP_109547.1 101 8  

bpsl3004 rpmA 50S ribosomal protein L27 YP_109599.1 109 2  

bpsl3196 rpsE 30S ribosomal protein S5 YP_109790.1 78 5  

bpsl3215 tuf Elongation factor Tu YP_109809.1 104 9  

bpsl3220 rpoC DNA-directed RNA polymerase subunit beta'  YP_109814.1 102 23  

bpsl3221 rpoB DNA-directed RNA polymerase subunit beta YP_109815.1 117 22  

bpss0421 rfbH Lipopolysaccharide biosynthesis protein (O-antigen-related)  YP_110445.1 45 1 I 

bpss0879 

 

Porin protein YP_110888.1 83 2 OM, I 

bpss0913 

 

Methionine gamma-lyase YP_110922.1 104 4  

bpss1356 

 

Hypothetical protein  YP_111366.1 133 22 OM 

bpss1498 hcp Hypothetical protein (Type VI secretion system secreted protein Hcp) YP_111505.1 112 14  

bpss1715 gltA Type II citrate synthase YP_111721.1 81 7  

bpss1722 mdh Malate dehydrogenase  YP_111728.1 107 5 I 

bpss1726 acnA Aconitate hydratase YP_111732.1 118 20  
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List of Burkholderia pseudomallei proteins isolated from eluates from both 10276 pBHR2-

virAG and 10276 bimA::pDM4 pBHR2-virAG bacteria. Proteins were assigned when peptides 

were isolated from both samples in at least 2 experiments, with a MASCOT score of at least 

30, at least one rank 1 peptide and where the predicted mass of the protein matched the 

observed mass. Proteins highlighted in grey and shown in bold were isolated in all 3 

experiments. In the Notes column, ‘OM’ indicates that the protein has previously been 

described as surface associated or a component of the B. pseudomallei outer membrane 

proteome
22, 24

. ‘I’ indicates the protein is recognised by recovering human melioidosis 

patient sera
24-25

. Proteins are listed in order of B. pseudomallei gene number with 

chromosome 1 encoded proteins (BPSLxxxx) listed first. 
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Synopsis description and image 

 

The BimA protein of the melioidosis pathogen Burkholderia pseudomallei recruits and 

polymerises cellular actin to promote motility within the host cell cytosol ls. The mechanism 

by which BimA subverts the cellular cytoskeletal machinery is understudied. We have used 

an affinity approach coupled with Mass Spectrometry to identify cellular proteins involved 

in tail formation, demonstrating that IQGAP1 participates in determining both the length 

and actin density of these structures. 
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Figure 6  
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