2,510 research outputs found

    Mutual information in the Tangled Nature Model

    Full text link
    We consider the concept of mutual information in ecological networks, and use this idea to analyse the Tangled Nature model of co-evolution. We show that this measure of correlation has two distinct behaviours depending on how we define the network in question: if we consider only the network of viable species this measure increases, whereas for the whole system it decreases. It is suggested that these are complimentary behaviours that show how ecosystems can become both more stable and better adapted.Comment: 7 pages, 5 figures. To appear in Ecological Modellin

    The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs

    Get PDF
    Pacman/Xrn1 is a highly conserved exoribonuclease known to play a critical role in gene regulatory events such as control of mRNA stability, RNA interference and regulation via miRNAs. Although Pacman has been well studied in Drosophila tissue culture cells, the biologically relevant cellular pathways controlled by Pacman in natural tissues are unknown. This study shows that a hypomorphic mutation in pacman (pcm5) results in smaller wing imaginal discs. These tissues, found in the larva, are known to grow and differentiate to form wing and thorax structures in the adult fly. Using microarray analysis, followed by quantitative RT-PCR, we show that eight mRNAs were increased in level by >2 fold in the pcm5 mutant wing discs compared to the control. The levels of pre mRNAs were tested for five of these mRNAs; four did not increase in the pcm5 mutant, showing that they are regulated at the post-transcriptional level and therefore could be directly affected by Pacman. These transcripts include one that encodes the heat-shock protein Hsp67Bc, which is upregulated 11.9-fold at the post-transcriptional level and 2.3-fold at the protein level. One miRNA, miR-277-3p, is 5.6-fold downregulated at the post-transcriptional level in mutant discs, suggesting that Pacman affects its processing in this tissue. Together, these data show that a relatively small number of mRNAs and miRNAs substantially change in abundance in pacman mutant wing imaginal discs. Since Hsp67Bc is known to regulate autophagy and protein synthesis, it is possible that Pacman may control the growth of wing imaginal discs by regulating these processes

    Tempo and Mode of Evolution in the Tangled Nature Model

    Full text link
    We study the Tangled Nature model of macro evolution and demonstrate that the co-evolutionary dynamics produces an increasingly correlated core of well occupied types. At the same time the entire configuration of types becomes increasing de-correlated. This finding is related to ecosystem evolution. The systems level dynamics of the model is subordinated to intermittent transitions between meta-stable states. We improve on previous studies of the statistics of the transition times and show that the fluctuations in the offspring probability decreases with number of transitions. The longtime adaptation, as seen by an increasing population size is demonstrated to be related to the convexity of the offspring probability. We explain how the models behaviour is a mathematical reflection of Darwin's concept of adaptation of profitable variations.Comment: 6 pages, 5 figure

    Composition of Arkansas Grapes During Maturation

    Get PDF
    Changes in organic acid and glucose content during maturation and ripening of grapes grown in Arkansas in 1973 are shown for four French hybrid varieties, S5279, S10878, SV23- 657, and S13053, and for four rotundifolia varieties, Scuppernong, Tarheel, Fry, and Magoon. In all varieties the concentrations of malates and tartrates were highest in the early stages of berry growth after veraison. During ripening the titratable acidity decreased and Balling and pH measurements increased. Although varieties reached maturity on different dates, changes in parameters followed similar curves typical for grapes of the species but occurring over a short period (Johnson and Nagel 1976, Winkler 1970). Rotundifolia varieties showed unacceptable Balling-acid ratios as well as irregular maturation progress in the study period

    Modelling storm surge wave overtopping of seawalls with negative freeboard

    Get PDF
    A Reynolds-averaged Navier-Stokes based wave model (RANS) is used to simulate storm surge wave overtopping of embankments. The model uses a wave generating boundary condition that accepts a wave time history as an input and reproduces the time history in the model. This allows a direct wave by wave simulation of recorded data. To investigate the success of the model at reproducing the wave generation, transformation and overtopping processes the model is compared with experimental laboratory data. A wave-by-wave comparison is performed for overtopping parameters such as discharge, depth and velocity. Finally the overtopping discharge predicted by the model is compared against design formulae.</jats:p

    Development of Sensing Systems for Improving Surgical Grasper Performance

    Get PDF
    Minimally invasive techniques play a vital and increasing role in modern surgery. In these procedures, surgical graspers are essential in replacing the surgeon’s fingertips as the main manipulator of delicate soft tissues. Current graspers lack haptic feedback, restricting the surgeon to visual feedback. Studies show that this can frequently lead to morbidity or task errors due to inappropriate application of force. Existing research has sought to address these concerns and improve the safety and performance of grasping through the provision of haptic feedback to the surgeon. However, an effective method of grasping task optimisation has not been found. This thesis explores new sensing approaches intended to reduce errors when manipulating soft tissues, and presents a novel tactile sensor designed for deployment in the grasper jaw. The requirements were first established through discussion with clinical partners and a literature review. This resulted in a conceptual approach to use multi-axis tactile sensing within the grasper jaw as a potential novel solution. As a foundation to the research, a study was conducted using instrumented graspers to investigate the characteristics of grasp force employed by surgeons of varying skill levels. The prevention of tissue slip was identified as a key method in the prevention of grasper misuse, preventing both abrasion through slip and crush damage. To detect this phenomena, a novel method was proposed based on an inductive pressure sensing system. To investigate the efficacy of this technique, experimental and computational modelling investigations were conducted. Computational models were used to better understand the transducer mechanisms, to optimise sensor geometry and to evaluate performance in slip detection. Prototype sensors were then fabricated and experimentally evaluated for their ultimate use in slip detection within a surgical grasper. The work concludes by considering future challenges to clinical translation and additional opportunities for this research in different domains

    Evaluation of the personal health budget pilot programme

    Get PDF
    1. The personal health budget initiative is a key aspect of personalisation across health care services in England. Its aim is to improve patient outcomes, by placing patients at the centre of decisions about their care. Giving people greater choice and control, with patients working alongside health service professionals to develop and execute a care plan, given a known budget, is intended to encourage more responsiveness of the health and care system. 2. The personal health budget programme was launched by the Department of Health in 2009 after the publication of the 2008 Next Stage Review. An independent evaluation was commissioned alongside the pilot programme with the aim of identifying whether personal health budgets ensured better health and care outcomes when compared to conventional service delivery and, if so, the best way for personal health budgets to be implemented

    Singlet fission spin dynamics from molecular structure: a modular computational pipeline

    Full text link
    Singlet fission, which has applications in areas ranging form solar energy to quantum information, relies critically on transitions within a multi-spin manifold. These transitions are driven by fluctuations in the spin-spin exchange interaction, which have been linked to changes in nuclear geometry or exciton migration. Whilst simple calculations have supported this mechanism, to date little effort has been made to model realistic fluctuations which are informed by the actual structure and properties of physical materials. In this paper, we develop a modular computational pipeline for calculating singlet fission spin dynamics by way of electronic structural calculations, molecular dynamics, and numerical models of spin dynamics. The outputs of this pipeline aid in the interpretation of measured spin dynamics and allow us to place constraints on geometric fluctuations which are consistent with these observations.Comment: 23 pages (including SI), 7 Figure
    • …
    corecore