3 research outputs found

    Subclonal diversification of primary breast cancer revealed by multiregion sequencing.

    Get PDF
    The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer

    Brain Atrophy in Healthy Aging Is Related to CSF Levels of Aβ1-42

    No full text
    Reduced levels of β-amyloid1-42 (Aβ1-42) and increased levels of tau proteins in the cerebrospinal fluid (CSF) are found in Alzheimer’s disease (AD), likely reflecting Aβ deposition in plaques and neuronal and axonal damage. It is not known whether these biomarkers are associated with brain atrophy also in healthy aging. We tested the relationship between CSF levels of Aβ1-42 and tau (total tau and tau phosphorylated at threonine 181) proteins and 1-year brain atrophy in 71 cognitively normal elderly individuals. Results showed that under a certain threshold value, levels of Aβ1-42 correlated highly with 1-year change in a wide range of brain areas. The strongest relationships were not found in the regions most vulnerable early in AD. Above the threshold level, Aβ1-42 was not related to brain changes, but significant volume reductions as well as ventricular expansion were still seen. It is concluded that Aβ1-42 correlates with brain atrophy and ventricular expansion in a subgroup of cognitively normal elderly individuals but that reductions independent of CSF levels of Aβ1-42 is common. Further research and follow-up examinations over several years are needed to test whether degenerative pathology will eventually develop in the group of cognitively normal elderly individuals with low levels of Aβ1-42
    corecore