37 research outputs found

    SPH simulations of the chemical evolution of bulges

    Full text link
    We have implemented a chemical evolution model on the parallel AP3M+SPH DEVA code which we use to perform high resolution simulations of spiral galaxy formation. It includes feedback by SNII and SNIa using the Qij matrix formalism. We also include a diffusion mechanism that spreads newly introduced metals. The gas cooling rate depends on its specific composition. We study the stellar populations of the resulting bulges finding a potential scenario where they seem to be composed of two populations: an old, metal poor, α\alpha-enriched population, formed in a multiclump scenario at the beginning of the simulation and a younger one, formed by slow accretion of satellites or gas, possibly from the disk due to instabilities.Comment: 2 pages, 3 figures. Proceedings of IAUS 245 "Formation and Evolution of Galaxy Bulges

    Hydrodynamic Approach to the Evolution of Cosmic Structures II: Study of N-body Simulations at z=0

    Get PDF
    We present a series of cosmological N-body simulations which make use of the hydrodynamic approach to the evolution of structures (Dominguez 2000). This approach addresses explicitly the existence of a finite spatial resolution and the dynamical effect of subresolution degrees of freedom. We adapt this method to cosmological simulations of the standard LCDM structure formation scenario and study the effects induced at redshift z=0 by this novel approach on the large-scale clustering patterns as well as (individual) dark matter halos. Comparing these simulations to usual N-body simulations, we find that (i) the new (hydrodynamic) model entails a proliferation of low--mass halos, and (ii) dark matter halos have a higher degree of rotational support. These results agree with the theoretical expectation about the qualitative behaviour of the "correction terms" introduced by the hydrodynamic approach: these terms act as a drain of inflow kinetic energy and a source of vorticity by the small-scale tidal torques and shear stresses.Comment: 18 pages, 17 figs, MNRAS in press, article with full resolution figures avaialble at http://www.aip.de/People/AKnebe/page2/page2.htm

    Large Scale Morphological Segregation in Optically Selected Galaxy Redshift Catalogs

    Full text link
    We present the results of an exhaustive analysis of the morphological segregation of galaxies in the CfA and SSRS catalogs through the scaling formalism. Morphological segregation between ellipticals and spirals has been detected at scales up to 15-20 h1^{-1} Mpc in the CfA catalog, and up to 20-30 h1^{-1} Mpc in the SSRS catalog. Moreover, it is present not only in the densest areas of the galaxy distribution, but also in zones of moderate density.Comment: 9 pages, (1 figure included), uuencode compressed Postscript, (accepted for publication in ApJ Letters), FTUAM-93-2

    Disc-like Objects in Hierarchical Hydrodynamical Simulations: Comparison with Observations

    Get PDF
    We present results from a careful and detailed analysis of the structural and dynamical properties of a sample of 29 disc-like objects identified at z=0 in three AP3M-SPH fully consistent cosmological simulations. These simulations are realizations of a CDM hierarchical model, where an inefficient Schmidt law-like algorithm to model the stellar formation process has been implemented. We focus on properties that can be constrained with available data from observations of spiral galaxies, namely, the bulge and disc structural parameters and the rotation curves. Comparisons with data from Broeils (1992), de Jong (1996) and Courteau (1996, 1997) give satisfactory agreement, in contrast with previous findings using other codes. This suggests that the stellar formation implementation we have used has succeded in forming compact bulges that stabilize disc-like structures in the violent phases of their assembly, while in the quiescent phases the gas has cooled and collapsed according with the Fall & Efstathiou standard model of disc formation.Comment: 22 pages, LaTeX; 14 figures; references updated. MNRAS, in pres

    Conservation Laws in Smooth Particle Hydrodynamics: the DEVA Code

    Full text link
    We describe DEVA, a multistep AP3M-like-SPH code particularly designed to study galaxy formation and evolution in connection with the global cosmological model. This code uses a formulation of SPH equations which ensures both energy and entropy conservation by including the so-called \bn h terms. Particular attention has also been paid to angular momentum conservation and to the accuracy of our code. We find that, in order to avoid unphysical solutions, our code requires that cooling processes must be implemented in a non-multistep way. We detail various cosmological simulations which have been performed to test our code and also to study the influence of the \bn h terms. Our results indicate that such correction terms have a non-negligible effect on some cosmological simulations, especially on high density regions associated either to shock fronts or central cores of collapsed objects. Moreover, they suggest that codes paying a particular attention to the implementation of conservation laws of physics at the scales of interest, can attain good accuracy levels in conservation laws with limited computational resources.Comment: 36 pages, 10 figures. Accepted for publication in The Astrophysical Journa

    Satellite galaxies in groups in the CIELO Project I: Gas removal from galaxies and its re-distribution in the intragroup medium

    Get PDF
    We study the impact of the environment on galaxies as they fall in and orbit in the potential well of a Local Group (LG) analogue, following them with high cadence. The analysis is performed on eight disc satellite galaxies from the CIELO suite of hydrodynamical simulations. All galaxies have stellar masses within the range [10 8.1 -109.56 ] M⊙h-1. We measure tidal torques, ram pressure, and specific star formation rates (sSFRs) as a function of time, and correlate them with the amount of gas lost by satellites along their orbits. Stronger removal episodes occur when the disc plane is oriented perpendicular to the direction of motion. More than one peripassage is required to significantly modify the orientations of the discs with respect to the orbital plane. The gas removed during the interaction with the central galaxies may also be found opposite to the direction of motion, depending on the orbital configuration. Satellites are not totally quenched when the galaxies reach their first peripassage and continue forming about 10 per cent of the final stellar mass after this event. The fraction of removed gas is found to be the product of the joint action of tidal torque and ram pressure, which can also trigger new star formation activity and subsequent supernova feedback.Fil: Rodríguez Moncada, Silvio Ribamar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Tissera, P.. Pontificia Universidad Católica de Chile; ChileFil: Bignone, Lucas Axel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Dominguez Tenreiro, Rosa. Pontificia Universidad Católica de Chile; ChileFil: Gonzalez, R.. Pontificia Universidad Católica de Chile; ChileFil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Luminosity- and morphology-dependent clustering of galaxies

    Get PDF
    How does the clustering of galaxies depend on their inner properties like morphological type and luminosity? We address this question in the mathematical framework of marked point processes and clarify the notion of luminosity and morphological segregation. A number of test quantities such as conditional mark-weighted two-point correlation functions are introduced. These descriptors allow for a scale-dependent analysis of luminosity and morphology segregation. Moreover, they break the degeneracy between an inhomogeneous fractal point set and actual present luminosity segregation. Using the Southern Sky Redshift Survey~2 (da Costa et al. 1998, SSRS2) we find both luminosity and morphological segregation at a high level of significance, confirming claims by previous works using these data (Benoist et al. 1996, Willmer et al. 1998). Specifically, the average luminosity and the fluctuations in the luminosity of pairs of galaxies are enhanced out to separations of 15Mpc/h. On scales smaller than 3Mpc/h the luminosities on galaxy pairs show a tight correlation. A comparison with the random-field model indicates that galaxy luminosities depend on the spatial distribution and galaxy-galaxy interactions. Early-type galaxies are also more strongly correlated, indicating morphological segregation. The galaxies in the PSCz catalog (Saunders et al. 2000) do not show significant luminosity segregation. This again illustrates that mainly early-type galaxies contribute to luminosity segregation. However, based on several independent investigations we show that the observed luminosity segregation can not be explained by the morphology-density relation alone.Comment: aastex, emulateapj5, 20 pages, 13 figures, several clarifying comments added, ApJ accepte

    Comparison between Disk-like Objects Formed in Hierarchical Hydrodynamical Simulations and Observations of Spiral Galaxies

    Get PDF
    We analyze the structural and dynamical properties of disk-like objects formed in fully consistent cosmological simulations which include inefficient star formation. Comparison with data of similar observable properties of spiral galaxies gives satisfactory agreement, in contrast with previous findings using other codes. This suggests that the stellar formation implementation used has allowed the formation of disks as well as guaranteed their stability
    corecore