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ABSTRACT

We present a series of cosmological N-body simulations which make use of the hydrodynamic
approach to the evolution of structures. This approach addresses explicitly the existence of a
finite spatial resolution and the dynamical effect of subresolution degrees of freedom. We adapt
this method to cosmological simulations of the standard Lambda cold dark matter structure
formation scenario and study the effects induced at redshift z = 0 by this novel approach on
the large-scale clustering patterns as well as (individual) dark matter haloes.

Comparing these simulations to usual N-body simulations, we find that (i) the new (hydro-
dynamic) model entails a proliferation of low-mass haloes and (ii) dark matter haloes have a
higher degree of rotational support. These results agree with the theoretical expectation about
the qualitative behaviour of the ‘correction terms’ introduced by the hydrodynamic approach:
these terms act as a drain of inflow kinetic energy and a source of vorticity by the small-scale
tidal torques and shear stresses.

Key words: gravitation – methods: N-body simulations – methods: numerical – galaxies:
formation – cosmology: theory.

1 I N T RO D U C T I O N

Gravitational instability is commonly accepted as the basic mecha-
nism for structure formation on large scales. Combined with the cold
dark matter (CDM) model it leads to the picture of hierarchical clus-
tering with wide support from deep galaxy and cluster observations.
During the recent phase of cosmic evolution groups and clusters of
galaxies condense from large-scale density enhancements, and they
grow by accretion and merger processes of the environmental cos-
mic matter.

But despite the fact that the currently favoured Lambda CDM
(�CDM) model has proven to be remarkably successful on large
scales (cf. Wilkinson Microwave Anisotropy Probe results, Spergel
et al. 2003, 2006), recent high-resolution N-body simulations still
seem to be in contradiction with observation on subgalactic scales.
There is, for instance, the problem with the steep central densities
of galactic haloes as the highest resolution simulations favour a
cusp with a logarithmic inner slope for the density profile of ap-
proximately −1.2 (Power et al. 2003; Fukushige, Kawai & Makino
2004; Diemand, Moore & Stadel 2005), whereas high-resolution
observations of low surface brightness galaxies are best fitted by

�E-mail: aknebe@aip.de

haloes with a core of constant density (de Block & Bosma 2002;
Swaters et al. 2003; Simon et al. 2005). A further problem relates to
the overabundance of small-sized (satellite) haloes; there are many
more subhaloes predicted by cosmological simulations than actu-
ally observed in nearby galaxies (e.g. Moore et al. 1998; Klypin
et al. 1999; Gottlöber et al. 2003). The lack of observational ev-
idence for these satellites has led to the suggestion that they are
completely (or almost completely) dark, with strongly suppressed
star formation due to the removal of gas from the small protogalaxies
by the ionizing radiation from the first stars and quasars (Bullock,
Kravtsov & Weinberg 2000; Tully et al. 2002; Somerville 2002;
Hoeft et al. 2006). Other authors suggest that perhaps low-mass
satellites never formed in the predicted numbers in the first place,
indicating problems with the �CDM model in general, which is re-
placed with warm dark matter (WDM) instead (Colı́n, Avila-Reese
& Valenzuela 2000; Bode, Ostriker & Turok 2001; Knebe, Green &
Binney 2002). Suggested solutions also include the introduction of
self-interactions into collisionless N-body simulations (e.g. Bento
et al. 2000; Spergel & Steinhardt 2000), and non-standard modifica-
tions to an otherwise unperturbed CDM power spectrum (e.g. bumpy
power spectra: Little, Knebe & Islam 2003; tilted CDM: Bullock
2001c). Recent results from (strong) lensing statistics though sug-
gest that the predicted excess of substructure is in fact required to
reconcile some observations with theory (Dalal & Kochanek 2002;
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Dahle, Hannestad & Sommer-Larsen 2003), but this conclusion
has not been universally accepted (Schechter & Wambsganss 2002;
Evans & Witt 2003; Sand et al. 2004).

The discovery of the mismatch between observations and simu-
lations is a result of the increase in the resolution of N-body simula-
tions over the last years. This has emphasized the importance of the
influence of subresolution scales on the simulated dynamics, at least
when it comes to halo properties. The purpose of this work is to study
the hydrodynamic-like formulation of the formation of cosmologial
structure proposed recently by Domı́nguez (2000), dubbed small-
size expansion (SSE). The SSE addresses explicitly the existence of
a finite spatial resolution and the dynamical effect of subresolution
degrees of freedom. Although developed independently, the SSE
approach is close in spirit to the large-eddy simulation of turbulent
flow (see e.g. Pope 2000, and references therein). This is a method
devised to simulate only the relevant, large-scale degrees of free-
dom according to the Navier–Stokes equations describing flow in
the high Reynolds number (i.e. turbulent) regime: physically mean-
ingful approximations are made in order to model the coupling to
the neglected, small-scale degrees of freedom.

The SSE starts from the microscopic equations of motion for a
set of N particles under their mutual gravity and provides a set of
hydrodynamic-like equations for the (coarse-grained) mass density
and velocity fields. These new equations now contain ‘correction
terms’ which describe the effects of the coarse-graining procedure
and correct for them, respectively. It therefore only appears natural
to implement these correction terms into an (adaptive) mesh N-body
code where the density is treated in a coarse-grained fashion, too:
mesh-based Poisson solvers frequently used for cosmological sim-
ulations smooth the particle distribution on to a grid and hence deal
with a coarse-grained density field when solving for the potential via
Poisson’s equation. For this purpose we will adapt the open source
N-body code MLAPM (Multi-Level Adaptive Particle-Mesh).1 The
particles of the N-body simulations presented in this study are ef-
fectively hydrodynamical Lagrangian particles which move under
the action not only of the mesh-computed gravitational force, but
also of the additional, correction terms modelling subgrid degrees
of freedom in the context of the SSE.

The rest of the work is structured as follows. In Section 2, we
describe the theoretical background of the SSE and provide the link
to mesh-based N-body codes. In Section 3, we present the simulation
of several models (standard �CDM model, �WDM model, and two
runs incorporating the SSE corrections). In Section 4, we perform
a comparative analysis of the four runs at redshift z = 0 from two
complementary points of view: properties of the mass density and
velocity fields, and properties of haloes. Finally, Section 5 includes
a discussion of the results and the conclusions.

2 T H E H Y D RO DY NA M I C A P P ROAC H

We deal with a system of non-relativistic, identical point particles
which (i) are supposed to interact with each other via gravity only,
(ii) look homogeneously distributed on sufficiently large scales,
so that the evolution at such scales corresponds to an expanding
Friedmann–Lemaı tre cosmological background and (iii) deviations
to homogeneity are relevant only on scales small enough that a New-
tonian approximation is valid to follow their evolution. Let a(t) then
denote the expansion factor of the Friedmann–Lemaı tre cosmolog-
ical background, H (t) = ȧ/a the associated Hubble function, and

1 Available at http://www.aip.de/People/AKnebe/MLAPM

�b(t) the homogeneous (background) density on large scales. xα is
the comoving spatial coordinate of the αth particle, uα = aẋα its
peculiar velocity, and m its mass. In terms of these variables the
evolution is described by the following set of equations (Peebles
1980) (∇α denotes a partial derivative with respect to xα):

ẋα = 1

a
uα, (1a)

u̇α = wα − Huα, (1b)

∇α · wα = −4πGa

[
m
a3

∑
β �=α

δ(3)(xα − xβ ) − �b

]
, (1c)

∇α × wα = 0, (1d)

where wα is the peculiar gravitational acceleration acting on the αth
particle. Finally, equations (1) must be subjected to periodic bound-
ary conditions in order to yield a Newtonian description consistent
with the Friedmann –Lemaı tre solution on large scales (Buchert &
Ehlers 1997).

If we now assume that the actual measure of the density field in an
N-body code depends on a smoothing window W(z), the microscopic
field �mic relates to the measured (coarse-grained) field � in the
following way:

�mic(x, t) = m
a(t)3

∑
α

δ(3)(x − xα(t)), (2a)

�(x, t ; L) =
∫

dy

L3
W

( |x − y|
L

)
�mic(y, t). (2b)

The physical interpretation of the field �(x; L) follows straightfor-
wardly from the properties of the smoothing window: it is propor-
tional to the number of particles contained within the coarsening cell
of size ≈L centred at x. A microscopic peculiar momentum density
field and the corresponding coarse-grained field can be defined in
the same way:

jmic(x, t) = m
a(t)3

∑
α

uα(t) δ(3)(x − xα(t)), (3a)

j(x, t ; L) =
∫

dy

L3
W

( |x − y|
L

)
jmic(y, t). (3b)

One can introduce peculiar velocity fields umic and u by definition
as j =: �u and similarly for umic. The physical meaning of u(x;
L) is also simple: it is the centre-of-mass peculiar velocity of the
subsystem defined by the particles inside the coarsening cell of size
≈L centred at x. Notice that u is not obtained by coarse-graining
umic: from a dynamical point of view, it is more natural to coarse-
grain the momentum rather than the velocity, since the former is an
additive quantity for a system of particles. Finally, one can define
peculiar gravitational acceleration fieldswmic andw through coarse-
graining of the force:

�micwmic(x, t) = m
a(t)3

∑
α

wα(t) δ(3)(x − xα(t)), (4a)

�w(x, t ; L) =
∫

dy

L3
W

( |x − y|
L

)
�micwmic(y, t). (4b)

The field w(x) has the physical meaning of the centre-of-mass pe-
culiar gravitational acceleration of the subsystem defined by the
coarsening cell at x.
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From these definitions and equations (1), it is straightforward to
derive the evolution equations obeyed by the coarse-grained fields
� and u (from now on, ∂/∂t is taken at constant x and L, and ∇
means partial derivative with respect to x):

∂�

∂t
+ 3H� = − 1

a
∇ · (�u), (5a)

∂(� u)

∂t
+ 4H� u = �w− 1

a
∇ · (�uu + π), (5b)

where a new second-rank tensor field has been defined (dyadic no-
tation):

π(x, t ; L) =
∫

dy

L3
W

( |x − y|
L

)
�mic(y, t)

[umic(y, t) − u(x, t ; L)][umic(y, t) − u(x, t ; L)]. (6)

The field π (x) is due to the velocity dispersion, i.e. to the fact
that the particles in the coarsening cell have in general a velocity
different from that of the centre of mass. The physical meaning of
equations (5) is simple: they are just balance equations, stating mass
conservation and momentum conservation, respectively. The term
�w codifies the gravitational interaction between the coarsening
cells and does not satisfy, in general, Poisson’s equation or the curl-
free condition. The term ∇ ·π represents a kinetic pressure force due
to the exchange of particles between neighbouring coarsening cells
(just like for an ideal gas) and it has the same physical origin as the
convective term ∇ · (�uu), i.e. a non-linear mode–mode coupling of
the velocity field. The difference is that the convective term couples
only modes on scales >L, while the velocity dispersion term codifies
the dynamical effect of the coupling of the modes on scales >L with
the modes on scales <L. Equations (5) are exact: as one changes the
smoothing length, the fields �, u, w, π change in such a way that
the form of the equations remains the same (e.g. upon increase of
the smoothing length, part of the dynamical effect described by ∇ ·
(� u u) is shifted towards ∇ · π). This property is reflected in that the
equations are not an autonomous system for � and u. In fact, they
are just the first ones of an infinite hierarchy, as can be checked by
computing the evolution equations for the fields w and π. To obtain
a useful set of equations, it is necessary to truncate this hierarchy
by looking for a functional dependence of w and π on � and u.

The peculiarities of the problem at hand (collisionless matter in
the non-stationary state of structure formation) prevent the usual
truncation of the hierarchy leading to the Euler or Navier–Stokes
equations, respectively (see e.g. Chapman & Cowling 1991). The
SSE is a specific truncation for this problem (Domı́nguez 2000,
2002; Buchert & Domı́nguez 2005), that starts from the physical
assumption that the coupling to the small scales is weak (this can
be argued on the basis that, in a hierarchical scenario, the smaller
scales ‘virialize’ earlier and thus ‘decouple’ from the evolution of
the larger scales). Then the fields π and w are derived as a formal
expansion in L: keeping terms up to order L2, equations (5) become
(∂i = ∂/∂xi ; summation over the repeated index i is understood)

∂�

∂t
+ 3H� = − 1

a
∇ · (�u), (7a)

∂(� u)

∂t
+ 4H�u = �wmf − 1

a
∇ · (�uu) + �C, (7b)

∇ · wmf = −4πGa (� − �b), (7c)

∇ × wmf = 0, (7d)

with the additional acceleration

C = BL2

�

{
(∇� · ∇)wmf − 1

a
∇ · [�(∂i u)(∂i u)]

}
. (8)

The constant B is determined by the smoothing window W(z),

B = 1

3

∫
dz z2 W (z) = 4π

3

∫ +∞

0

dz z4 W (z). (9)

To order L0, equations (7) reduce to the ‘dust (pressureless) approxi-
mation’ for cosmological structure formation (Sahni & Coles 1995):
wmf represents the mean-field gravity created by the monopole mo-
ment of the matter distribution in the coarsening cells, i.e. the total
mass, and the coupling to the small scales is neglected altogether.
To order L2 there are two kinds of corrections: the term proportional
to the tidal tensor ∇wmf, stemming from a term w− wmf in equat-
ions (5), models the gravitational force of the higher order multi-
pole moments, i.e. the coupling to the subresolution configurational
degrees of freedom; the term proportional to (∂i u) (∂i u), stemming
from π in equations (5) models the effect of velocity dispersion, i.e.
the coupling to the subresolution kinetic degrees of freedom.

The expected dynamical effect of these new terms with respect
to the ‘dust evolution’ has been studied theoretically (Domı́nguez
2000, 2002; Buchert & Domı́nguez 2005). There is evidence that,
assuming a locally plane-parallel collapse, these terms mimick the
‘adhesion model’ (Gurbatov, Saichev & Shandarin 1989; Sahni &
Coles 1995), in which recently collapsed regions stabilize – or more
generally speaking, the term due to velocity dispersion tends to
reduce the inflow velocity in collapsing regions and favours the
formation of gravitationally bound systems. It has also been shown
that the correction terms act as a source of vorticity via small-scale
tidal forces and shear stresses. The ‘dust model’ lacks a source of
vorticity ω = ∇ × u, and the initially present one is damped by the
cosmological expansion in the linear regime. Thus, in that respect
the corrections to the ‘dust model’ can be particularly important.
Taking the curl of equation (7b) we obtain

∂ω

∂t
= − Hω + 1

a
∇ × (u × ω) + ∇ × C, (10)

where the term ∇ × C is a source of vorticity, i.e. it does not van-
ish in general even if ω = 0, as has been confirmed perturbatively
by Domı́nguez (2002). We comment further on the relationship be-
tween vorticity and angular momentum in Appendix A, where also
some results concerning the conservation of energy, momentum and
angular momentum are derived.

The dynamical evolution predicted by equations (7) can be imple-
mented without much difficulties in a particle-mesh (PM) code of
N-body simulation. Mass conservation, equation (7a), is automati-
cally satisfied by the code. The acceleration wmf given by equations
(7c) and (7d) agrees with the value returned by the Poisson solver
on a grid, and the grid constant sets naturally the resolution L. In
principle, one only needs to take care of equation (7b), which can
be rewritten in Lagrangian coordinates as

u̇ = wmf − Hu + C . (11)

The computation of C, given by equation (8), on the grid of the
Poisson solver is a highly non-trivial but manageable task. Thus,
equation (11) – together with ẋ = u/a, see equation (1a) – deter-
mines the motion of Lagrangian fluid elements, which are sampled
by the particles of the simulation. If we set B = 0 (⇒ C = 0) in
equation (11) we recover the equations of motions that are being in-
tegrated in a standard PM code for the update of particle velocities
and positions during the course of the simulation.
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3 T H E N - B O DY S I M U L AT I O N S

3.1 The set-up

The N-body simulations presented in this study were carried out
using a version of the open source adaptive mesh refinement code
MLAPM (Knebe et al. 2001). This code reaches high force resolution
by refining high-density regions with an automated refinement al-
gorithm. These adaptive meshes are recursive: refined regions can
also be refined, each subsequent refinement having cells that are half
the size of the cells in the previous level. This creates a hierarchy
of refinement meshes of different resolutions covering regions of
interest. The refinement is done cell by cell (individual cells can be
refined or de-refined) and meshes are not constrained to have a rect-
angular (or any other) shape. The criterion for (de-)refining a cell is
simply the number of particles within that cell and a detailed study
of the appropriate choice for this number can be found elsewhere
(Knebe et al. 2001). The code also uses multiple time-steps on dif-
ferent refinement levels where the time-step for each level is two
times smaller than the step on the previous level. The latest version
of MLAPM also includes an adaptive time-stepping that adjusts the
actual time-step after every major step to restrict particle movement
across a cell to a particular fraction of the cell spacing, hence, fine
tuning accuracy and computational time.

As outlined above, the only necessary modification required to
model the ‘Hydrodynamic APProxImation’ (or ‘HAPPI’ hereafter)
is to account for the correction term C in equation (11) when updat-
ing the particle velocities.2 MLAPM has therefore been modified to
not only calculate the density field on its hierarchy of nested refine-
ment grids but also the velocity field. The ∇-operator and spatial
derivatives, respectively, have been approximated by finite differ-
ences using the two nearest neighbours (in each dimension) to the
cell for which the correction term is being calculated. Cells close
to a refinement boundary for which not enough surrounding nodes
are present, obtain their correction values interpolated downwards
from the next coarser grid level. The assignment of mass and mo-
mentum on the grid is done with a triangular-shaped-cloud window
(Hockney & Eastwood 1988),

W (z) =

⎧⎪⎨⎪⎩
3
4 − z2 for |z| � 0.5,

1
2

(
3
2 − |z|)2

for 0.5 < |z| � 1.5,

0 otherwise,

(12)

for which B = 1/4 according to equation (9). We remark that, due
to the dynamical (de)refinement procedure of the MLAPM code, the
resolution is space dependent in a discrete manner, while equations
(7) were derived under the assumption of a spatially homogeneous
length L. The SSE can be generalized to the case of a smoothly vary-
ing L(x) [Domı́nguez (unpublished); Domı́nguez (2002) contains
the generalization to a time-dependent L], but we have neglected
this additional complication because the fraction of particles which
are in regions where L jumps is less than 1 per cent during the
run. Finally, we also note that this numerical method of integrating
the hydrodynamic equations is different from, albeit similar to, the
smoothed particle hydrodynamics method (Gingold & Monaghan
1977; Lucy 1977) frequently used in cosmological simulations in-
volving baryonic matter.

2 The modifications are part of MLAPM v1.4 (and all later versions) and can
be switched on using -DHAPPI upon compile time.

We ran four simulations with cosmological parameters in agree-
ment with the so-called concordance model, i.e. �0 = 1/3,
λ0 = 2/3, σ 8 = 0.88, h = 2/3:

(i) one standard �CDM model,
(ii) one �WDM model (mWDM = 0.5 keV),
(iii) two �CDM models with B = 1/4 and B = 1, respectively.

Even though B is actually determined by the smoothing window, we
also considered a four times larger value as if it were a free parameter
of the model. This model is to be understood as an ‘academic toy
model’ where we hope to gain better insight into the effects of the
correction term on cosmological structure formation.

All simulations consist of N = 1283 particles in a box of side
length 25 h−1 Mpc (the mass of a simulation particle is mpart ≈ 7 ×
108 h−1 M�), and they were started at redshift z = 35. The two
�CDM models with B �= 0 are also dubbed �CDM happi1 (B =
1/4) and �CDM happi2 (B = 1). We chose to also run a �WDM
model to allow for a more complete comparison of the new HAPPI
models to other, alternative cosmologies. A more elaborate study of
the �WDM model and WDM can be found in Knebe et al. (2002).

The force resolution in MLAPM is determined by the finest re-
finement level reached throughout the run. While all four models
applied exactly the same refinement criterion (six particles per cell),
the �CDM happi2 run only invoked five refinement levels whereas
all other runs used seven levels at redshift z = 0. In terms of force
resolution this translates to 10 h−1 kpc spatial resolution for �CDM
happi2 (corresponding to an estimated maximum density ∼5 ×
104�b) and 2.5 h−1 kpc for all the other models (maximum density
∼3 × 106 �b). This difference can be ascribed to the smoothening
effect of the correction terms in the dynamical equations that are
more effective for higher values of B.

3.2 Accuracy of the code

A useful check of the accuracy of a simulation is provided by the
global invariants of the dynamical system, which we derive and
discuss in Appendix A.

The dynamical evolution conserves the quantity a
∑

α
uα (if the

force and density interpolation schemes are identical). It was found
that departures from the initially vanishing value satisfy the bound

1

N

∣∣∣∣∣
N∑

α=1

uα

∣∣∣∣∣�3 × 10−3 umean, umean = 1

N

N∑
α=1

|uα|, (13)

where at redshift z = 0 the average particle velocity was umean ≈
300 km s−1 in all four models.

In standard N-body codes it is common practice to check con-
stancy of the invariant I (see equation A5) following from the
Layzer–Irvine equation (e.g. Knebe et al. 2001). This is not the
case for the two HAPPI models, since the correction term C is a
source or drain of energy as discussed in Appendix A. We though
chose to plot in Fig. 1 the dimensionless quantity

Ĩ(t) = I(t) − I(t1)

aU mf(t)
, (14)

as a function of cosmic expansion factor a, where Umf is the mean-
field potential energy defined in equations (A1). For the �CDM
and �WDM models, the Layzer–Irvine equation holds and predicts
Ĩ = 0. Departures from this result are ascribed to both integra-
tion/truncation errors introduced by the code and the fact that the
particle shape is neither constant in time nor space due to the adaptive
nature of MLAPM (cf. Knebe et al. 2001). �CDM happi1 performs
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Figure 1. Variation with the expansion factor a of the dimensionless quantity
Ĩ defined by equation (14).

rather similar to the standard CDM model, indicating that the effect
of the correction term C in the evolution of I is small compared
to the numerical errors. �CDM happi2, on the other hand, departs
noticeably from the other models and Ĩ changes sign at around a
redshift of z ≈ 3, which lets us expect to find larger differences
between �CDM happi2 and �CDM.

3.3 The Importance of the HAPPI correction

In order to test the importance of the correction term equation (8) we
calculated the ratio of the mean-field acceleration (i.e. F = |wmf|)
and the additional acceleration (C = |C |) for each individual particle

Figure 2. The correction term in comparison to the mean-field force acting on a single particle as a function of density. The four panels are for all particles in
the simulation at redshifts z = 0 (upper left-hand panel), z = 0.5 (upper right-hand panel), z = 1.0 (lower left-hand panel) and z = 4.0 (lower right-hand panel).
The vertical line indicates the virial overdensity at the respective redshift. The number in each quadrant lists the total number of particles in this regime of the
plot.

as a function of the local density at various redshifts. The result for
the �CDM happi2 model, for which the effect of C is the largest,
can be viewed in Fig. 2. This figure indicates that the effect of the
newly added terms is generally rather small especially at late times.
At redshift z = 0 the fraction of all particles with F/C < 1 (‘HAPPI
particles’) is a mere 9 per cent while it increases to 15 per cent at
z = 4. In order to examine a possible trend with density, we consider
at each redshift two subsets of particles according to whether the
density is above or below the virial overdensity �vir (cf. equation 17
in Section 4.2) and hence particles of the high-density subset either
already belong to virialized structures or will be part of them at a
later time. Table 1 gives the fraction of HAPPI particles in each
subset.

This raises the question about the exact locations as well as the
‘dynamics’ of HAPPI particles. A visual inspection shows that, at
high redshift, they are preferentially located within the filaments
flowing towards haloes. At later times though, they can be found
either in regions of strong dynamical activity (e.g. mergers, the out-
skirts of haloes and infall to haloes), or at the very centres of relaxed
systems. The smaller spatial force resolution of the �CDM happi2
mentioned earlier can hence be linked to the influence of the HAPPI
particles at the very centres of haloes.

4 A NA LY S I S O F T H E M AT T E R D I S T R I BU T I O N

4.1 Large-scale structure and global properties

A visual impression of the density field of the particle distribution at
redshift z = 0 for all four models is shown in Fig. 3, where the local
density at each particle position was determined by smoothing the
distribution on to a regular grid (2563 nodes) and interpolating the
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Table 1. Fraction of HAPPI particles in the subset of low-density particles,
and in the subset of high-density particles, respectively.

Redshift (z) Low density (per cent) High density (per cent)

0 10 6
0.5 14 9
1 16 12
4 14 23

density on the mesh back to the particle positions. Not surprisingly,
the �WDM model appears less clumpy and far smoother than the
�CDM simulation. However, there appears to be more small-scale
structure in both the HAPPI runs, or at least the smaller objects
are more contrasted. We can readily relate this phenomenon to the
influence of B and larger B values give higher contrasts (remember
that the fiducial �CDM model is nothing else than a HAPPI model
with B = 0). But despite the more grainy appearance of the HAPPI
runs in Fig. 3, the power on small scales is reduced compared to
the power of the �CDM model. This can be verified in Fig. 4,
where we plot the dark matter power spectrum of density fluctuations
for all four models at redshifts z = 3 (lower curves) and z = 0
(upper curves). Especially �CDM happi2 falls behind �CDM even
though it appears to be marginally more evolved at higher redshift.
We will though see that these two results, the ‘graininess’ of the
�CDM happi2 model and the lack of small-scale power, do not
exclude each other. The absence of small-scale power on scales
below ∼1–2 h−1 Mpc reflects the fact that the haloes corresponding
to those scales (i.e. haloes of mass >1011 h−1 M�) are internally
less concentrated than their �CDM counterparts.

Figure 3. Colour-coded density field of all four models at redshift z = 0. The order is (clockwise starting upper left-hand panel) �CDM, �CDM happi1,
�CDM happi2, and �WDM.

Figure 4. Dark matter power spectrum P(k) for all models at redshifts z =
3 (lower curves) and z = 0 (upper curves).

4.1.1 Beyond the two-point estimators

Two-point estimators like the power spectrum are sensitive only
to the amplitude of the modes of the fluctuating field �(x) − �b.
The information concerning the relative phases is contained in the
higher order correlations. In the literature there have been several
meaningful quantities proposed depending on higher order correla-
tions with a more or less transparent physical interpretation. In this
work, we have employed the scalar Minkowski functionals (MFs)
(see e.g. Mecke & Stoyan 2000; Domı́nguez 2001), which allow a
quantification of the morphological aspects appreciated by visual
inspections. Given a density field �(x) and a density threshold ρ̂,
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one constructs the isodensity surface S = {x|�(x) = ρ̂} (with the
convention that the region � > ρ̂ is taken as the interior of S). The
four MFs Vν , ν = 0, 1, 2, 3, can be defined as surface integrals over
S and have the following geometrical meaning (up to a conventional
constant prefactor):

V0 ∝ volume enclosed by the isodensity surfaceS
V1 ∝ total area ofS

V2/V1 ∝ mean curvature ofS, averaged overS
V3/V1 ∝ Gaussian curvature ofS, averaged overS
V0 is in fact proportional to the probability that �(x) > ρ̂ (assuming
spatial ergodicity of the realization). The ratio V1/V0 is a measure
of how compact the volume enclosed by S is packed. V2/V1 is a
measure of the convexity of the surface S, while V3 is proportional
to the Euler characteristic or genus of the body defined by S:

V3 ∝ number of disconnected objects + number of holes

− number of tunnels.

There seems to be a close relation between the threshold value at
which V3 vanishes and the percolation threshold of the volume en-
closed by S (Mecke & Wagner 1991; Neher 2003) – as a matter of
fact, the use of percolation analysis is not rare in the analysis of cos-
mological structures (e.g. Yess & Shandarin 1996). As an example
of how the MFs are to be interpreted, in Appendix B we discuss the
case that �(x) is derived from a realization of a Poissonian distribu-
tion of points.

Starting from the positions of the particles given by the simulation,
a density field �(x) is generated on a grid by smoothing with the
window equation (12). We generated 20 different realizations of
the field by displacing randomly the grid and we present the MFs
averaged over these realizations. The MFs are functions of the grid
constant and the density threshold. We observe that the measurement
of the MFs in an N-body simulation is affected by two kinds of errors
(which are more pronounced for higher orders ν of the MF Vν).

(i) Finite-volume effects: The tails of the probability distribution
of the density field cannot be probed correctly in a finite volume,
so that the measured MFs are noisy and take discrete values (due
to the grid) as the threshold approaches the extremal values probed
in a given simulation. This effect can be reduced by increasing the
number of realizations.

(ii) Finite-mass effects: At threshold values corresponding to
�1–10 particles per grid node, the MFs detect that the density field
is actually derived from a distribution of point particles.

In order to emphasize the differences between the four simulations
and to facilitate the physical interpretation, we plotted as a function
of ρ̂ the relative difference between a measure in one model and
the corresponding one in the reference �CDM model (denoted by
‘ref’):

Vν

V ref
ν

− 1 (ν = 0, 3),

Vν

Vν−1
×

(
Vν−1

Vν

)ref

− 1 (ν = 1, 2).

The plots are shown in Fig. 5 for a grid of 1283 nodes. As a general
feature, the trend of the �WDM model with respect to the reference
�CDM model is always opposite to the trend of the two HAPPI
runs, with the deviations of �CDM happi2 being larger than those
of �CDM happi1. Only at very high density thresholds, �CDM
happi2 seems to follow an opposite trend to �CDM happi1: this is
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Figure 5. MFs versus density threshold at redshift z = 0. The threshold is
given in units of particles per grid node. The grid has 1283 nodes, corre-
sponding to a grid constant 0.20 h−1 Mpc, so that the threshold coincides
with the ratio �/�b for this spatial resolution.
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because the maximum density in the �CDM happi2 run is smaller
than in the �CDM happi1 or �CDM runs. This (physical) effect
has been already noticed concerning the final force resolution of the
runs: it is due to the larger effect of the additional acceleration C

and can be directly linked to the location of ‘HAPPI particles’ at
redshift z = 0 at the centre of relaxed structures, see Sections 3.1
and 3.3. The results can be summarized as follows.

(i) The dependence V0(ρ̂) quantifies the visual impression that
low-density regions (� � 10 �b) are clearly less likely in the WDM
model, while overdense regions (10 � �/�b � 103) are more abun-
dant in the HAPPI models. As remarked, higher density areas are
rarer in �CDM happi2 and more frequent in �CDM happi1 com-
pared to �CDM.

(ii) From the fact that V2, V3 > 0 (not shown in the plot) in the
whole range of threshold values, one infers that, observed at the
resolution of 1283 nodes, the matter distribution consists mainly of
‘clusters’ (i.e. disconnected objects which are convex on average).
According to the plot of (V2/V1)(ρ̂), these clusters in the HAPPI
runs tend to be rounder than in the �CDM run, while they tend to
be more cigar-shaped (filament-like) in the�WDM model. From the
plot of V3(ρ̂) one deduces that the �WDM model has less clusters at
all threshold values; the HAPPI runs have more clusters, except for
�CDM happi2 at very high densities because this particular model
does not reach as high densities as the other ones.

(iii) Finally, the plot of (V1/V0)(ρ̂) shows that matter is more
compactly packed in the �WDM model, and less compactly in the
HAPPI runs. This is likely due to the different cluster abundances
just discussed.

We have repeated the analysis at different spatial resolutions (163,
323, 643 and 2563 nodes) for the MFs. The quantitative differences
between models decrease as the grid becomes coarser, but the same
conclusions hold roughly in a qualitative manner.

Summarizing, the �WDM run has less voids and more
filamentary-like structures than the reference �CDM model, while
the HAPPI runs have comparatively more mass concentrated in
small, roundish clusters.

4.1.2 The velocity field

Motivated by the theoretical discussion, we have also addressed
the distribution of the (comoving) vorticity, ω = ∇ × u, and the
(comoving) divergence, θ = ∇ · u, of the peculiar velocity field
u(x). Using the positions and velocities of the particles, we com-
pute the fields ω(x) and θ (x) on a regular grid (see Section 3). The
cumulative probabilities that |ω|2 > ω̂2 and that θ2 > θ̂ 2 are given
by the first MF V0, which we compute as explained previously.

Fig. 6 shows P/Pref − 1, where P is the cumulative probability
measured in a simulation, and Pref is the corresponding probability in
the reference �CDM simulation. The �CDM happi2 model shows
a clear tendency to have a larger vorticity and a lower divergence (in
absolute value) than the �CDM model. The vorticity in the �CDM
happi1 model exhibits a similar tendency, but the differences are
quantitatively smaller. In order to minimize finite-mass effects, we
considered only grid nodes for which the value of the smoothed
density field corresponds to more than 10 particle per node. If we
restrict the measurement of the probability distributions to higher
densities, the quantitative differences tend to be smaller.

4.2 Dark matter haloes

The analysis in the following Subsection is primarily based upon
gravitational bound objects which were identified using MLAPM’s
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Figure 6. Cumulative probabilities P(|ω|2 > ω̂2), P(θ2 > θ̂2) relative to
the probabilities in the �CDM model at redshift z = 0 at a resolution of 1283

grid nodes. The solid symbols represent the (relative) cumulative probability
of the vorticity, the joined open symbols correspond to the divergence. The
threshold (ω̂2, θ̂2) is given in units of H2

0.

Halo Finder (MHF) (Gill, Knebe & Gibson 2004). This newly de-
veloped halo finder uses the adaptive grid structure invoked by the
N-body code MLAPM and re-organizes it into a tree. The centres of
the grids at the end-leaves of a branch of the tree serve as (poten-
tial) halo centres and all gravitationally bound particles about these
centres are being collected. For a more elaborate discussion of this
halo finder we refer the reader to Gill et al. (2004). We only like
to note at this point that MHF is essentially parameter free and
naturally finds haloes with exactly the same accuracy as the sim-
ulation. Besides of the growth of the halo mass function and the
abundance evolution of gravitationally bound objects, respectively,
we confine our analysis to objects identified at redshift z = 0. The
investigation of the evolutionary history and hierarchical growth of
structures will be published elsewhere.

4.2.1 Global properties

In Fig. 7, we show the evolution of the cumulative mass function
n(>M) of dark matter haloes, i.e. the number of DM haloes with
mass larger than M. The �WDM model clearly has less low-mass
objects as already pointed out by other authors (Colı́n et al. 2000;

Figure 7. Cumulative mass function n(>M) of DM haloes.
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Figure 8. Number density evolution of objects more massive than M >

1010 h−1 M�.

Bode et al. 2001; Knebe et al. 2002). All three CDM models though
perfectly agree at a redshift of z = 5, but there is a clear trend for the
HAPPI models to give rise to more small mass haloes, in agreement
with the conclusion derived in the previous section. This can be
verified in Fig. 8, where we plot the number density evolution of
objects more massive than M > 1010 h−1 M� (>20 particles). In
�CDM happi2 there are roughly 50 per cent more haloes above our
mass cut than in the reference �CDM run.

In order to study the clustering properties of these haloes we
estimated the two-point correlation function for low- and high-mass
objects, respectively, as

ξgal(r ) = −1 + V
N 2

gal

Ngal∑
α=1

nα(r ; �r )

v(r ; �r )
, (15)

where Ngal is the total number of objects in the simulation volume
V, and nα(r; �r) is the total number of objects in a spherical shell
of radius r and thickness �r [and volume v(r; �r)], centred at the
αth object. The result (along with Poisson error bars based upon the
number of pairs in each bin) is shown in Fig. 9. The low-mass objects
show very similar clustering patterns, with a higher amplitude of ξ gal

for �WDM and a marginally decreased correlation for the �CDM
happi2 model. The situation though is difficult to judge at the high-
mass end as we have too few pairs per bin to make conclusive
statements. The errors bars are larger than the differences amongst
the models and hence have been omitted. It seems, however, that the
clustering pattern of high mass objects is similar in all models and
does not show differences when including the HAPPI correction
term.

The most striking (and interesting) difference between standard
�CDM and the two HAPPI models, however, emerges when we
turn to the spin parameter distribution. The spin parameter λ was
calculated using the definition given by Bullock et al. (2001a),

λ = |L|√
2Mvirvvirrvir

, (16)

where L is the angular momentum of the halo with respect to its cen-
tre of mass, rvir is the virial radius of the halo, Mvir is the virial mass
(mass enclosed within the virial radius), and vvir = √

G Mvir/rvir is
the circular velocity at the virial radius. The virial radius and mass
are determined by the condition

Mvir = 4π

3
r 3

vir�vir, (17)

Figure 9. Two-point correlation function of objects more massive (upper
panel) and less massive (lower panel) than 1012 h−1 M�.

where �vir = �vir �b(z = 0) is a fiducial density with �vir ≈ 340 (at
redshift z = 0) based on the dissipationless spherical top-hat collapse
model for the cosmological parameters of the �CDM model. The
probability distribution, P(λ), of the spin parameter was fitted to a
lognormal distribution (e.g. Frenk et al. 1988; Warren et al. 1992;
Cole & Lacey 1996; Gardner 2001; Maller, Dekel & Somerville
2002),

P(λ) = 1

λ
√

2πσ 2
0

exp

[
− ln2(λ/λ0)

2σ 2
0

]
. (18)

The results are presented in Fig. 10 and in Table 2, showing that a
larger value of B entails a larger spin parameter. In the lower panel
of Fig. 10 – where we plot the cumulative distribution of the spin
parameter – we clearly see that for a given λ the probability to
find haloes with a smaller λ is greatly lowered in �CDM happi2 –
or in other words, it is more likely to find haloes with larger spin
parameters in �CDM happi2. As we will see later on (cf. Fig. 13 in
Section 4.2.2), there is a mass dependence of this result: lower mass
haloes tend to dominate the signal seen in Fig. 10. When plotting the
mass-weighted spin parameter distribution (not shown) the peaks for
all four models approach each other. However, even then the HAPPI
runs still show a distinct tail out to larger λ values.

The HAPPI correction term also affects the concentration of dark
matter haloes. We define the concentration c1/5 as the ratio of the
virial radius rvir and the radius of the sphere that contains 1/5 of the
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Figure 10. Upper plot: measured spin parameter distribution for all four
models at redshift z = 0, and the corresponding fit to equation (18). Lower
plot: measured cumulative distribution of the spin parameter.

Table 2. Parameters derived from fitting the spin parameter
distributions P(λ) to equation (18).

Model λ0 σ 0

�CDM 0.0287 0.4485
�CDM happi1 0.0333 0.4611
�CDM happi2 0.0596 0.4914
�WDM 0.0259 0.4001

virial mass [i.e. r1/5 is defined via M(< r1/5) = Mvir/5]:

c1/5 = rvir

r1/5
. (19)

In view of definition (17), it follows that the average density within
a radius r1/5 is given by (1/5) c3

1/5 �vir. Fig. 11 plots the cumulative
probability distribution of the concentration of haloes. We observe
an obvious trend for an overabundance of low-concentration haloes
in the �WDM and �CDM happi2 models. However, the opposite
actually holds for �CDM happi1, where there appear to be of order
10 per cent more concentrated haloes. The relative lack of power on
scales �1 h−1 Mpc noted in Fig. 4 for WDM and �CDM happi2 is
related to the relatively lower concentration (and increased smooth-
ness for WDM) of the haloes observed in these models (one must

Figure 11. Cumulative distribution of the concentration parameter c1/5.

bear in mind that the haloes have a virial radius �800 h−1 kpc, see
Fig. 16).

Although not shown, we confirm that the scaling of the concen-
tration c1/5, defined by equation (19), with mass Mvir follows the
same relation as the one proposed by Bullock et al. (2001b) for
the ‘NFW (Navarro, Frenk & White) concentration’ of the halo,
cNFW = rvir/rs (see equation 21 for the definition of rs).

4.2.2 Cross-correlations

While the last section dealt with the distribution of halo properties,
we now compare these properties across the models, i.e. how do
these properties change in a given halo when moving from one
model to another?

In order to find corresponding haloes across the four models,
we compare their individual particle content. We start with a halo
in the �CDM model, whose particles are tagged, and locate the
corresponding halo in the other three models as the one that shares
the largest number of tagged particles. In Figs 12–14, we always plot
the value of the property under investigation in the �CDM model,
divided by the value of said property in the other model for all ‘cross-
identified’ haloes. These ‘scatter-plots’ are always accompanied by
histograms, where we average the ratios presented in the respective
figure in nine bins across the actual mass range. The percentages
of counterparts amount to practically 100 per cent for the HAPPI
models while there are only 40 per cent cross-identified haloes in
the �WDM model. This number though increases to about 90 per
cent when we consider haloes containing more than 200 particles
(i.e. M � 1011 h−1 M�), and hence we set this as a lower limit in
the cross-correlation plots.

We start with the most obvious halo attribute, namely the halo
mass itself. Fig. 12 shows that there is a very tight correlation for
the masses of individual haloes, especially for �CDM and �CDM
happi1. The scatter about the 1:1 relation (the flat line of value 1)
marginally increases from ∼11 per cent (averaged 1σ -value) for
�CDM happi1 to ∼18 per cent for �CDM happi2. At the high-
mass end, the �CDM happi2 haloes tend to have a slightly larger
mass. The most pronounced differences can be found for �WDM
though: at the low-mass end the haloes in �WDM appear to be less
massive than their �CDM counter parts.

In the previous section we showed that the HAPPI correction
term lead to an increase in angular momentum by investigating the
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Figure 12. Ratio of halo masses for cross-identified objects. The virial mass
Mvir is given in units of h−1 M�. The histograms represent the mean ratio
in the respective bin.

spin parameter distributions. But can we be sure that the observed
rise in λ as defined by equation (16) is not related to a possible
decrease of virial radius rvir and/or virial velocity vvir? To clarify
this uncertainty we show in Fig. 13 the cross-correlation of total
specific angular momentum,

J = |L|
Mvir

. (20)

In view of the already mentioned minimal scatter in the mass of
cross-identified haloes between the �CDM model and the HAPPI
models, Fig. 13 confirms the previous result that one effect of the
term C in equation (7b) is to inject angular momentum to haloes. We
also note that there is a mass dependence in this trend: the differences
in angular momentum are on average larger for lower mass objects,
this being particularly noticeable for the�CDM happi2 and�WDM
models; this ‘break’ roughly happens at around 1012 h−1 M�.

We close this section with an investigation of the cross-correlation
of the concentration parameter c1/5 in Fig. 14. The results are consis-
tent with Fig. 11: �CDM happi1 haloes are more concentrated than
their �CDM counterparts, while the excess of low-concentration
haloes for �CDM happi2 is due to high-mass haloes. The mass
trend already noted in Fig. 13 can also be acknowledged in this
figure.

Figure 13. Ratio of specific angular momenta.

Finally, we mention as a general property that the dispersion in
the scatter plots increases as the halo mass diminishes. We attribute
most of this scatter to differences in the halo’s formation history,
but a detailed study as function of redshift is required which we will
postpone to a later paper. Moreover, numerical effects could also
contribute to some extent.

4.2.3 A closer view of individual haloes

A visual representation of the two most massive haloes in all four
models is given in Fig. 15. This figure nicely demonstrates the result
regarding the lower concentrations in (high-mass) �CDM happi2
haloes: the second most massive halo does not even show a distinct
centre in �CDM happi2 and appears more ‘puffy’ than in any of
the other models.

The question now arises whether the density profiles of the HAPPI
models can still be fitted by the universal density profile advocated
by Navarro, Frenk & White (1997)

ρ(r ) = ρsr 3
s

r (rs + r )2
. (21)

Fig. 16 now shows ρ(r) and the corresponding best fits to NFW pro-
files for a selection of haloes covering the mass range from the most
massive one (upper left-hand panel) to rather light haloes (lower
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Figure 14. Ratio of halo concentrations c1/5.

right-hand panel) containing a mere 300 particles. For (nearly) all
�CDM happi2 haloes we observe a relative flattening in the central
regions.

In order to gauge the quality of the fits (for the 16 presented
sample profiles) we calculate the χ2 value defined as

χ 2 = 1

Nbins

Nbins∑
i=1

∣∣∣∣ρi − ρNFW(ri )

ρNFW(ri )

∣∣∣∣2

, (22)

where ρi are the binned density profiles derived from the simulation
data and ρNFW the best-fitting NFW profiles. This analysis then
indicates that all four models are equally well fitted by equation (21)
with χ 2 varying in the range χ 2 ∼ 0.02–0.05 depending on the
weighing scheme applied for each individual bin. This entails that
the dark matter haloes of the HAPPI runs still exhibit the rather
infamous ‘cusp’ at the centre.

We remind the reader again that the force resolution through-
out the runs varies. Whereas �CDM, �CDM happi1 and �WDM
reached 2.5 h−1 kpc resolution, �CDM happi2 reliably resolves
structures only on scales larger than 10 h−1 kpc. Moreover, the res-
olution can also change from halo to halo due to the adaptive mesh
nature of both the halo finder and the N-body code: not all halo cen-
tres lie on the finest grid level reached in the simulation. However,
we plot profiles starting from the distance rmin that corresponds to a

Figure 15. Visual representation of the two most massive haloes at redshift
z = 0. The left-hand column shows the most massive halo while the right-
hand column is the second most massive one. From top to bottom one has
�CDM, �CDM happi1, �CDM happi2 and �WDM.

sphere containing at least 10 particles (and hence rmin can be actually
smaller than the nominal resolution of the simulation).

For the same set of haloes we present in Fig. 17 the rotation curves
out to half the respective virial radius. The rotational velocity vcirc(r)
is defined as

vcirc(r )2 = G M(< r )

r
. (23)

There are a number of interesting observations to discuss now. We
find that in nearly every halo the �CDM happi1 rotation curve rises
to higher values than any of the other models. While the maximum
is still at comparable distances in �CDM and �CDM happi1, the
latter shows a steeper inner increase and a subsequent faster decline
to nearly the same level in the ‘outer’ parts. Moreover, the �CDM
happi1 rotation curves are always slightly above the corresponding
�CDM curves. Quite the opposite is true for �CDM happi2. Here,
we find that in most of the cases the circular rotation values at a
given radius are substantially smaller than in �CDM. However,
this difference becomes less prominent in lower mass systems and
the flat part of the rotation curve nearly reaches the same level as
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Figure 16. Density profiles for haloes at redshift z = 0. The number printed into each halo panel is the mass of the halo in units of h−1 M�. The vertical lines
to the right-hand side indicate the respective virial radius while the two vertical lines to the left-hand side indicate the spatial resolution of the �CDM, �CDM
happi1, �WDM (dashed line) and �CDM happi2 (dotted line) run, respectively.

�CDM. This discrepancy in the trends between �CDM happi1 and
�CDM happi2 for high-mass haloes is likely related to the also
opposite trends concerning the concentration, Figs 11 and 14, and
the small-scale power, Fig. 4.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a series of cosmological N-body simulations
which made use of the hydrodynamic approach to the evolution of
structures (Domı́nguez 2000). This approach is novel in that it deals
with the mass density and velocity fields with explicit account of the
coarse-grained nature intrinsic to any approach of solving, for in-
stance, Poisson’s equation via Monte Carlo sampling of phase space.
This N-body approach unavoidably introduces finite-resolution ef-
fects and there have been systematic studies of the consequences in
the context of cosmological structure formation (Kuhlman, Melott &
Shandarin 1996; Moore et al. 1998; Splinter et al. 1998; Knebe et al.
2000; Power et al. 2003). N-body simulations invariably neglect the
dynamical effect of subresolution degrees of freedom altogether. For
the first time, we have run simulations including a physical model
of the coupling to the neglected scales. N-body codes are usually
viewed as integrators of the Vlasov–Poisson system of equations.
However, we have argued how grid-based N-body codes such as

MLAPM can be reinterpreted to integrate hydrodynamic-like equa-
tions for the mass density and velocity fields.

The additional, correction term introduced in the hydrodynamic
approach is proportional to a ‘coupling constant’ B which depends
on the smoothing window used to calculate the coarse-grained fields.
It is found to be B = 1/4 for the triangular-shaped-cloud window
used throughout the N-body code MLAPM. In order to get a better
understanding of the effects of the correction term on to the evolution
of cosmic structures we also performed a simulation with a higher
value B = 1 – this later model is not physically motivated but rather
serves as an ‘academic toy model’ for comparison. The standard
�CDM simulation can be understood as another HAPPI run with
the value B = 0. In order to allow for a better comparison with other
feasible alternatives to the concordance �CDM model as well as to
better gauge the influence of the correction term, we also simulated
the evolution of the same structures in a �WDM universe.

In this work we concentrated on the comparison of the four sim-
ulations at redshift z = 0. We analysed the resulting structures in
two complementary manners: global properties of the mass den-
sity and velocity fields, on the one hand, and specific properties
of DM haloes, on the other hand. We find appreciable differences
between the B �= 0 runs and the reference (B = 0) �CDM run, even
though the force due to the correction terms are for most particles
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Figure 17. Rotation curves for the same haloes as in Fig. 16.

one or even two orders of magnitude smaller than the total force
(cf. Fig. 2). Most remarkably, the correction term favours the pro-
liferation of low-mass haloes, giving the mass distribution a more
‘grainy’ aspect, as well as the gain of angular momentum specially
by low-mass haloes, which also shows up in a velocity field with a
larger vorticity. These effects are quantitatively larger as the value
of B increases; for B = 1/4 the differences lie at the (10–20) per
cent level (and even higher for the specific angular momentum at
low masses). A feature in which the B = 1/4 and B = 1 runs exhibit
an opposite trend with respect to the B = 0 run is the concentration
of high-mass haloes: the B = 1 run results in an overabundance of
high-mass haloes with a lower concentration This is paralleled by a
smaller circular velocity of these haloes, and by the relative lack of
power in the spectrum of density fluctuations at sufficiently small
scales, so that the maximum density reached in the B = 1 run is
much smaller than in the other runs. The B = 1/4 run, however,
shows precisely the opposite tendency with respect to the reference
run. One can conjecture that this discrepancy between the B = 1/4
and B = 1 runs lies in a difference in the rate of shear and vorticity
generation and of kinetic energy drainage by the correction term. A
comparative study of the structures at different redshifts is required
in order to obtain more precise conclusions about this issue.

The relatively small quantitative differences between the B = 1/4
and the B = 0 runs evidenced in the properties that we have measured

suggest that the B = 1/4 correction term could be considered a small
perturbation to the B = 0 evolution. By contrast, the results of the
B = 1 run indicate that the correction term should not be treated as
a perturbation in this case.

Our results agree with the theoretical expectation for the quali-
tative behaviour of the correction term, which models the effect of
small-scale tidal torques and shear stresses (Domı́nguez 2000, 2002;
Buchert & Domı́nguez 2005). We observed that the correction term
is dominant preferentially in walls at high redshifts, and later on
in filaments, regions of mass accretion on to haloes, halo centres as
well as in regions of particular dynamical activity (e.g. mergers), i.e.
regions of large gradients in the fields, in concordance with the form
of the correction term (8). The term is expected to act as a drain of
kinetic energy in collapsing regions: this can explain the formation
of small clusters of particles, which would otherwise fly by each
other – instead, they can be gravitationally confined by a potential
well that is lower than in the B = 0 model. This could explain the
low-mass halo proliferation for B = 1/4 or B = 1, as well as the
observed tendency of haloes to attain a slightly more concentrated
configuration in the case of B = 1/4, when the correction term can
be considered a small perturbation. If B = 1, on the other hand,
the loss of kinetic energy is apparently so important that, in some
cases of haloes in regions of high dynamical activity, dynamical re-
laxation and coalescence are slowed down noticeably, leading to a
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multiple-core structure. These not completely relaxed haloes would
then have a lower concentration and a lower mass than their LCDM
counterparts, similarly to the simulation results.

We further confirmed explicitly that the correction term acts as
a source of vorticity. This relates directly to the gain in angular
momentum of haloes, which tends to increase with growing value
of B, especially at the low-mass end of the halo distribution.

Finally, we remark that our findings agree qualitatively with con-
clusions following from a comparative study of identical initial con-
ditions evolved at different resolutions. We have run a series of test
simulations where we either switched on the HAPPI correction term
or increased the actual force resolution; both methods lead to com-
parable results that are in qualitative agreement with the conclusions
presented here. For a more quantitative analysis we though refer the
reader to a future paper in preparation where we will investigate
the relationship between HAPPI simulations and higher resolution
ones in more detail. The proliferation of small haloes with increas-
ing resolution has also been reported by other authors in and around
(massive) haloes (Moore et al. 1998; Klypin et al. 1999) as well as in
voids (Gottløber et al. 2003). Concerning the generation of angular
momentum though, the relevance for the formation of realistic disc
galaxies has yet to be determined but there are clear indications that
this task requires good mass and force resolution (Governato et al.
2004). In conclusion, the HAPPI implementation seems indeed to
be qualitatively consistent with what one expects from higher reso-
lution simulations and hence may provide a framework for a better
understanding of resolution effects in N-body simulations. However,
further work is required to substantiate this possibility.
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A P P E N D I X A : C O N S E RVAT I O N O F E N E R G Y,

M O M E N T U M A N D A N G U L A R M O M E N T U M

The coupling to the small scales modelled by C in equations (7) in-
jects energy into (or drains energy from) the resolved spatial scales.
Given the simulation box Vbox with periodic boundary conditions,
we can define the total peculiar kinetic energy and the total peculiar
mean-field potential energy as follows:

K = 1

2
a3

∫
Vbox

dx � u2,

U mf = 1

2�b
a2

∫
Vbox

dxdy [�(x) − �b][�(y) − �b]S(x − y), (A1)
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where the time-independent, symmetric kernel S(x) is the solution
of the problem

∇2S = 4πG
(

a3�b

)
δDirac(x) (x ∈ Vbox). (A2)

The mean-field gravitational acceleration is given by

wmf(x) = − 1

�ba2
∇x

∫
Vbox

dy [�(y) − �b]S(x − y). (A3)

Then, it is easy to show from equations (7) that the total peculiar
energy H = K + U mf satisfies the evolution equation

dH
dt

= −H (2K + U mf) + a3

∫
Vbox

dx �u · C . (A4)

This is a generalization of the Layzer–Irvine equation. Due to the
correction term, the condition of ‘mean-field virialization’, 2K +
Umf = 0, does not imply a time-independent H. The quantity

I = aH +
∫

da K (A5)

is conserved by the original Layzer–Irvine equation but is not con-
stant according to the generalized equation (A4).

Concerning momentum and angular momentum, equations (7) do
not violate global conservation. Let V(t) denote a time-dependent
volume defined by the condition that the mass enclosed is constant,
i.e. a Lagrangian domain. The peculiar momentum of the domain,

PV = a3

∫
V (t)

dx �u, (A6)

verifies the evolution equation

dPV

dt
= −HPV + a3

∫
V (t)

dx �(wmf + C). (A7)

The correction term can be written as the divergence of a tensor
(Buchert & Domı́nguez 2005)

�Ci = BL2∂ j

[
�
(
∂iw

mf
j

) + 2πGa�2δi j − 1

a
�(∂kui )(∂ku j )

]
,

so that its contribution in equation (A7) is a surface integral over the
border of V(t). In particular, when V(t) = Vbox, this surface integral
vanishes by periodic boundary conditions and, since the contribution
by wmf also vanishes in this case, equation (A7) states that aPVbox

is a constant of motion.
In the same manner, one defines the angular momentum of the

domain V(t) with respect to its centre of mass Xcm(t),

LV = a4

∫
V (t)

dx (x − Xcm) × �u. (A8)

The evolution equation for this quantity is

dLV

dt
= a4

∫
V (t)

dx (x − Xcm) × �(wmf + C). (A9)

The contribution by C can be written again as a surface integral over
the border of V(t). Thus, when V(t) = Vbox, equation (A9) predicts
that LVbox is also a constant of motion.

As discussed in Section 2, the correction C is a source of vorticity
in the otherwise curl-free flow of the ‘dust model’. Equation (A9)
shows that the correction also affects the evolution of the angular
momentum of a domain. In this case, however, the effect may not
be so noticeable, since already at the level of the ‘dust model’ there
are tidal torques by the mean-field gravity wmf. Moreover, since
the contribution by C is a surface integral, it may be expected to
be less relevant for a larger domain V(t). Actually, we can rewrite

the definition (A8) by inserting the identity 2(x − Xcm) =
∇|x −Xcm|2 as

LV = 1

2
a4

∮
∂V

dS × �u |x − Xcm|2

− 1

2
a4

∫
V

dx |x − Xcm|2 [�ω − (∇�) × u], (A10)

and we see that vorticity is but one contribution to the angular mo-
mentum of a Lagrangian domain.

A P P E N D I X B : M I N KOW S K I F U N C T I O NA L S

O F A P O I S S O N D I S T R I BU T I O N

As an illustration of the dependence of the MFs on the threshold,
Fig. B1 shows the MFs of a realization of a Poisson distribution
of points: 1283 particles were distributed randomly in a cubical
box, and the density field �(x) was obtained by smoothing with the
window equation (12) in a cubic grid of 163 nodes. The plots are
symmetric about the mean value of the density (512 particles per
node) and span a width ≈ rms density (= √

512) along the threshold
axis.

(i) The volume V0(ρ̂) decreases monotonically as the threshold
is increased and the high-density regions � > ρ̂ shrink.

(ii) The area V1(ρ̂) first increases as the low-density regions
(� < ρ̂) expand and, after reaching a maximum, it decreases as the
high-density regions (� > ρ̂) shrink.

(iii) The average mean curvature V2(ρ̂) increases monotonously
from a negative value (S is concave towards the shrinking high-
density region) to a positive value (S is convex towards the shrinking
high-density region).

(iv) Finally, the genus V3(ρ̂) is positive when S looks bubble-
like: there are many unconnected expanding low-density regions
(‘holes’) at small ρ̂, and many unconnected shrinking high-density
regions (‘clusters’) at large ρ̂ . V3 is negative when S is predom-
inantly saddle-shaped: one observes many intertwined high- and
low-density regions (‘tunnels’) at intermediate ρ̂.
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Figure B1. MFs versus density threshold of the realization of a Poissonian
distribution of points.
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