3 research outputs found
Reductive electrosynthesis of crystalline metal-organic frameworks
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal–organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn[subscript 4]O(BDC)[subscript 3] (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn[superscript 2+]/BDCsuperscript 2–] system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.Massachusetts Institute of Technology. Energy Initiative (Seed Fund Program)National Science Foundation (U.S.) (Grant CHE-9808061)National Science Foundation (U.S.) (Grant DBI-9729592)National Science Foundation (U.S.) (Grant DMR- 0819762
FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes
[EN] A set of ancient Antoninianus silver coins, dating back between 249 and 274¿A.D. and minted in Rome, Galliae, Orient and Ticinum, have been characterized. We use, for the first time, a combination of nano-invasive (focused ion beam-field emission scanning electron microscopy-X-ray microanalysis (FIB-FESEM-EDX), voltammetry of microparticles (VIMP)) and destructive techniques (scanning electron microscopy (SEM-EDX) and electron microprobe analysis (EMPA)) along with non-invasive, i.e., micro-Raman spectroscopy. The results revealed that, contrary to the extended belief, a complex Ag-Cu-Pb-Sn alloy was used. The use of alloys was common in the flourishing years of the Roman Empire. In the prosperous periods, Romans produced Ag-Cu alloys with relatively high silver content for the manufacture of both the external layers and inner nucleus of coins. This study also revealed that, although surface silvering processes were applied in different periods of crisis under the reign of Antoninii, even during crisis, Romans produced Antoninianus of high quality. Moreover, a first attempt to improve the silvering procedure using Hg-Ag amalgam has been identified.Financial support was provided by Sapienza University of Rome (Ateneo funding, 2014 15) and Spanish
projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported with Ministerio de
Economía, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) funds, as
well as project CTQ2017-85317-C2-1-P supported with funds from, MINECO, ERDF and Agencia Estatal de
Investigación (AEI). PhD grants of the Department of Earth Sciences, Sapienza University of Rome, are gratefully
acknowledgedDomenech Carbo, MT.; Di Turo, F.; Montoya, N.; Catalli, F.; Doménech Carbó, A.; De Vito, C. (2018). FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-28990-xS8Doménech-Carbó, A., del Hoyo-Meléndez, J. M., Doménech-Carbó, M. T. & Piquero-Cilla, J. Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchem. J. 130, 47–55 (2017).Di Turo, F. et al. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal. Chim. Acta 955, 36–47 (2017).Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Anal. Chem. 83, 5639–5644 (2011).Giumlia-Mair, A. et al. Surface characterisation techniques in the study and conservation of art and archaeological artefacts: a review. Materials Technology 25(5), 245–261 (2010).Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage 7, 1–12 (2006).Campbell, W. Greek and Roman plated coins, Numismatics Notes and Monographs 57, American Numismatic Society, New York (1933).Kallithrakas-Kontos, N., Katsanos, A. A. & Touratsoglou, J. Trace element analysis of Alexander the Great’s silver tetradrachms minted in Macedonia, Nuclear Instruments and Methods in Physics. Research B 171, 342–349 (2000).Catalli, F. Numismatica greca e romana. (Libreria dello Stato, 2003).Cope, L. H. The Metallurgical development of the Roman Imperial Coinage during the first five centuries. (Liverpool, 1974).Scriptores Historiae Augustae. Historia Augusta. (The Perfect Library, 2014).Vlachou-Mogire, C., Stern, B. & McDonnell, J. G. The application of LA-ICP-MS in the examination of the thin plating layers found in late Roman coins. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 265, 558–568 (2007).Keturakis, C. J. et al. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques. Appl. Surf. Sci. 376, 241–251 (2016).Ingo, G. M. et al. Roman sophisticated surface modification methods to manufacture silver counterfeited coins. Appl. Surf. Sci. 1–11, https://doi.org/10.1016/j.apsusc.2017.01.101 (2017).La Niece, S. In: La Niece S. & Craddock, P. (Eds), Metal, Plating and Platination, Butterworth–Heinemann, London, 1993, p. 201.Anheuser, K. & France, P. Silver plating technology of the late 3rd century Roman coinage. Historical Metallurgy 36(1), 17–23 (2002).Anheuser, K. & Northover, P. Silver plating on Roman and Celtic coins from Britain– A technical study. The British Numismatic Journal 64, 22–32 (1994).Anheuser, K. Where is all the amalgam silvering? Materials Issues1996 in Art and Archaeology - V proceedings, Boston.Beck, L. et al. In NIM 269, 2011 and in Counterfeit coinage of the Holy Roman Empire in the 16th century: silvering process and archaeometallurgical replications, Archaeometallurgy in Europe III.Deraisme, A., Beck, L., Pilon, F. & Barrandon, J. N. A study of the silvering process of the Gallo-Roman coins forged during the third century AD. Archaeometry 48, 469–480 (2006).Giumlia-Mair, A. On surface analysis and archaeometallurgy. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 239, 35–43 (2005).Tate, J. Some problems in analysing museum material by nondestructive surface sensitive techniques. Nuclear Inst. and Methods in Physics Research, B, 14 (1), pp. 20–23 (1986).Beck, L., Bosonnet, S., Réveillon, S., Eliot, D. & Pilon, F. Silver surface enrichment of silver-copper alloys: A limitation for the analysis of ancient silver coins by surface techniques. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 226, 153–162 (2004).Pardini, L. et al. X-ray fluorescence and laser-induced breakdown spectroscopy analysis of Roman silver denarii. Spectrochim. Acta - Part B At. Spectrosc. 74–75, 156–161 (2012).Klockenkämper, R., Bubert, H. & Hasler, K. Detection of near-surface silver enrichment on Roman imperial silver coins by x-ray spectral analysis. Archaeometry 41, 311–320 (1999).Ponting, M., Evans, J. A. & Pashley, V. Fingerprinting of roman mints using laser-amblation MC-ICP-MS lead isotope analysis.Del Hoyo-Meléndez, J. M. et al. Micro-XRF analysis of silver coins from medieval Poland. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 349, 6–16 (2015).Cesare Brandi. Il restauro. Teoria e pratica (1939–1986). (Editori Riuniti, 2009).Barberio, M., Veltri, S., Scisciò, M. & Antici, P. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage. Sci. Rep. 7, 40415 (2017).Linke, R., Sehreiner, M., Demortier, G., Alram, M. & Winter, H. Non-Destructive Microanalysis of Cultural Heritage Materials. Comprehensive Analytical Chemistry 42, (Elsevier, 2004).Łojewska, J. et al. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools. Sci. Rep. 7, 46236 (2017).Meulebroeck, W., Wouters, H., Nys, K. & Thienpont, H. Authenticity screening of stained glass windows using optical spectroscopy. Nat. Sci. Reports 6 37726, 1–10 (2016).Martina, I., Wiesinger, R. & Schreiner, M. Micro-Raman Characterisation of Silver Corrosion Products: Instrumental Set Up and Reference. e-Preservation. Sci. Rep 9, 1–8 (2012).Rizzo, F. et al. Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A. D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchem. J. 97, 286–290 (2011).Carl, M. & Young, M. L. Complementary analytical methods for analysis of Ag-plated cultural heritage objects. Microchem. J. 126, 307–315 (2016).Cepriá, G., Abadías, O., Pérez-Arantegui, J. & Castillo, J. R. Electrochemical Behavior of Silver-Copper Alloys in Voltammetry of Microparticles: A Simple Method for Screening Purposes. Electroanalysis 13, 477–483 (2001).Capelo, S., Homem, P. M., Cavalheiro, J. & Fonseca, I. T. E. Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J. Solid State Electrochem. 17, 223–234 (2013).Doménech-Carbó, A. et al. Detection of archaeological forgeries of Iberian lead plates using nanoelectrochemical techniques. The lot of fake plates from Bugarra (Spain). Forensic Sci. Int. 247, 79–88 (2015).Doménech-Carbó, A., Doménech-Carbó, M. T. & Peiró-Ronda, M. A. ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis 23, 1391–1400 (2011).Doménech-Carbó, A., Doménech-Carbó, M. T., Montagna, E., Álvarez-Romero, C. & Lee, Y. Electrochemical discrimination of mints: The last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta1 69, 50–56 (2017).Ager, F. J. et al. Combining XRF and GRT for the analysis of ancient silver coins. Microchem. J. 126, 149–154 (2016).Fawcett, T., Blanton, J., Blanton, T., Arias, L. & Suscavage, T. Non-destructive evaluation of Roman coin patinas from the 3rd and 4th century. Powder Diffraction, 1–10.Salvemini, F. et al. Neutron tomographic analysis: Material characterization of silver and electrum coins from the 6th and 5th centuries B.C. Mater. Charact. 118, 175–185 (2016).Ashkenazi, D., Gitler, H., Stern, A. & Tal, O. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria. Sci. Rep. 7, 40659 (2017).Romano, F. P., Garraffo, S., Pappalardo, L. & Rizzo, F. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques. Spectrochim. Acta - Part B At. Spectrosc. 73, 13–19 (2012).Ingo, G. M. et al. Ancient Mercury-Based Plating Methods: Combined Use of Surface Analytical Techniques for the Study of Manufacturing Process and Degradation Phenomena. Accounts of Chemical Research 46(11), 2365–2375.Pouchou, J. L. & Pichoir, F.¨PAP¨ (ϕ–ρ–Z) procedure for improved quantitative microanalysis, in: Armstrong, J. T. (Ed.), Microbeam Analysis, San Francisco Press, San Francisco, pp. 104–106 (1985)
Unconventional Fluorescence Quenching in Naphthalimide-Capped CdSe/ZnS Nanoparticles
Core–shell
(CS) CdSe/ZnS quantum dots (QD) capped with ligands
that possess a mercapto or an amino group and a naphthalimide (NI)
as chromophore unit, linked by a short ethylene chain (CS@S–NI
and CS@H<sub>2</sub>N–NI, respectively), have been synthesized
and fully characterized by infrared and nuclear magnetic resonance
spectroscopies, high-resolution transmission electron microscopy,
and voltammetry as well as by steady-state absorption and emission
spectroscopies. The organic ligands HS–NI and H<sub>2</sub>N–NI act as bidentate ligands, thereby causing a drastic decrease
in the QD emission. This was particularly evident in the case of CS@S–NI.
This behavior has been compared with that of commercially available
QDs with octadecylamine as the surface ligand and a QD capped with
decanethiol ligands (CS@S–D). The interaction between the anchor
groups and the QD surface brings about different consequences for
the radiative and nonradiative kinetics, depending on the nature of
the anchor group. Our results suggest that the naphthalimide group
“stabilizes” empty deep trap states due to the carbonyl
group capacity to act as both a σ-donor and a π-acceptor
toward cations. In addition, the thiolate group can induce the location
of electron density at shallow trap states close to the conduction
band edge due to the alteration of the QD surface provoked by the
thiolate binding