82 research outputs found

    Cisplatin Tumor Biodistribution and Efficacy after Intratumoral Injection of a Biodegradable Extended Release Implant

    Get PDF
    Local delivery of chemotherapeutic drugs has long been recognized as a potential method for reaching high drug doses at the target site while minimizing systemic exposure. Cisplatin is one of the most effective chemotherapeutic agents for the treatment of various tumors; however, its systemic toxicity remains the primary dose-limiting factor. Here we report that incorporation of cisplatin into a fatty acid-based polymer carrier followed by a local injection into the solid tumor resulted in a successful tumor growth inhibition in heterotopic mouse bladder tumor model in mice. Platinum concentration in the tumor tissue surrounding the injected implant remained above the therapeutic level up to 14 days after the injection, while the plasma levels were several orders of magnitude lower comparing to systemic delivery. The reported delivery system increased the maximum tolerated dose of cisplatin 5 times compared to systemic delivery, thus potentially improving antitumor efficacy of cisplatin in solid tumor model

    Safety profile of dextran-spermine gene delivery vector in mouse lungs

    Get PDF
    A nano-sized polymer, dextran-spermine (D-SPM), was shown to have the capacity to deliver gene to the lung of mouse via intranasal route. In this study, assessments on the safety profile of D-SPM were performed to complement the gene expression results. African green monkey kidney fibroblast (COS-7) and human adenocarcinoma breast (MCF-7) cells transfected with D-SPM/pDNA showed massive reduction in the number of viable cells. As for in vivo study, elevated level of neutrophils was observed, despite the minimal level of pro-inflammatory cytokines (TNF-α, IL-12, IFN-γ detected in the bronchoalveolar lavage fluid (BALF) of mice treated with the D-SPM/pDNA complexes. Histology profile examinations of the lungs showed mild inflammatory responses, with inflamed areas overlap with healthy areas. Although reduction of mice weight was seen at day 1 post administration, the mice did not show any sign of abnormal behavior or physical appearance. Biodistribution study was performed to determine the ability of the D-SPM/pDNA complexes to infiltrate to other non-intended organs. The result showed that the D-SPM/pDNA complexes were only localized at the lung and no gene expression was detected in other organs or blood. In short, these results indicate that the D-SPM/pDNA exhibited mild toxicity in the mouse lungs

    Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Get PDF
    A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range

    Modulation of the nucleation rate pre-exponential in a low-temperature Ising system

    Full text link
    A metastable lattice gas with nearest-neighbor interactions and continuous-time dynamics is studied using a generalized Becker-Doring approach in the multidimensional space of cluster configurations. The pre-exponential of the metastable state lifetime (inverse of nucleation rate) is found to exhibit distinct peaks at integer values of the inverse supersaturation. Peaks are unobservable (infinitely narrow) in the strict limit T->0, but become detectable and eventually dominate at higher temperatures.Comment: 4 pages, 2 Postscript figures, LaTeX, submitted to Phys. Rev. Lett. Changes: updated references, re-written section around eqs.(5),(6), typos, minor wording changes in conclusion and other parts of text (mostly in response to referees' comments). Paper resubmitted to PR

    Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets

    Full text link
    Magnetization switching in highly anisotropic single-domain ferromagnets has been previously shown to be qualitatively described by the droplet theory of metastable decay and simulations of two-dimensional kinetic Ising systems with periodic boundary conditions. In this article we consider the effects of boundary conditions on the switching phenomena. A rich range of behaviors is predicted by droplet theory: the specific mechanism by which switching occurs depends on the structure of the boundary, the particle size, the temperature, and the strength of the applied field. The theory predicts the existence of a peak in the switching field as a function of system size in both systems with periodic boundary conditions and in systems with boundaries. The size of the peak is strongly dependent on the boundary effects. It is generally reduced by open boundary conditions, and in some cases it disappears if the boundaries are too favorable towards nucleation. However, we also demonstrate conditions under which the peak remains discernible. This peak arises as a purely dynamic effect and is not related to the possible existence of multiple domains. We illustrate the predictions of droplet theory by Monte Carlo simulations of two-dimensional Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure

    Handbook of Biodegradable Polymers

    No full text
    xvii;ill.;526hal.;28c

    Instantaneous Degelling Thermoresponsive Hydrogel

    No full text
    Responsive polymeric hydrogels have found wide application in the clinic as injectable, biocompatible, and biodegradable materials capable of controlled release of therapeutics. In this article, we introduce a thermoresponsive polymer hydrogel bearing covalent disulfide bonds. The cold aqueous polymer solution forms a hydrogel upon heating to physiological temperatures and undergoes slow degradation by hydrolytic cleavage of ester bonds. The disulfide functionality allows for immediate reductive cleavage of the redox-sensitive bond embedded within the polymer structure, affording the option of instantaneous hydrogel collapse. Poly(ethylene glycol)-b-poly(lactic acid)-S-S-poly(lactic acid)-b-poly(ethylene glycol) (PEG-PLA-SS-PLA-PEG) copolymer was synthesized by grafting PEG to PLA-SS-PLA via urethane linkages. The aqueous solution of the resultant copolymer was a free-flowing solution at ambient temperatures and formed a hydrogel above 32 °C. The immediate collapsibility of the hydrogel was displayed via reaction with NaBH4 as a relatively strong reducing agent, yet stability was displayed even in glutathione solution, in which the polymer degraded slowly by hydrolytic degradation. The polymeric hydrogel is capable of either long-term or immediate degradation and thus represents an attractive candidate as a biocompatible material for the controlled release of drugs

    Nonlinear Fatty Acid Terminated Polyanhydrides

    No full text
    corecore