34 research outputs found

    Poorly differentiated clusters (PDC) in colorectal cancer: what is and ought to be known.

    Get PDF
    The counting of poorly differentiated clusters of 5 or more cancer cells lacking a gland-like structure in a tumor mass has recently been identified among the histological features predictive of poor prognosis in colorectal cancer. Poorly differentiated clusters can easily be recognized in the histological sections of colorectal cancer routinely stained with haematoxylin and eosin. Despite some limitations related to specimen fragmentation, counting can also be assessed in endoscopic biopsies. Based on the number of poorly differentiated clusters that appear under a microscopic field of a ×20 objective lens (i.e., a microscopic field with a major axis of 1 mm), colorectal cancer can be graded into malignancies as follows: tumors with <5 clusters as grade 1, tumors with 5 to 9 clusters as grade 2, and tumors with ≥10 clusters as grade 3. High poorly differentiated cluster counts are significantly associated with peri-neural and lympho-vascular invasion, the presence of nodal metastases or micrometastases, as well as shorter overall and progression free survival to colorectal cancer. The morphological aspects and clinical relevance of poorly differentiated clusters counting in colorectal cancer are discussed in this review

    Predictive factors for relapse in triple-negative breast cancer patients without pathological complete response after neoadjuvant chemotherapy

    Get PDF
    IntroductionTriple-negative breast cancer (TNBC) patients who do not obtain pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) present higher rate of relapse and worse overall survival. Risk factors for relapse in this subset of patients are poorly characterized. This study aimed to identify the predictive factors for relapse in TNBC patients without pCR after NACT. MethodsWomen with TNBC treated with NACT from January 2008 to May 2020 at the Modena Cancer Center were included in the analysis. In patients without pCR, univariate and multivariable Cox analyses were used to determine factors predictive of relapse. ResultsWe identified 142 patients with a median follow-up of 55 months. After NACT, 62 patients obtained pCR (43.9%). Young age at diagnosis (<50 years) and high Ki-67 (20%) were signi!cantly associated with pCR. Lack of pCR after NACT resulted in worse 5-year event-free survival (EFS) and overall survival (OS). Factors independently predicting EFS in patients without pCR were the presence of multifocal disease [hazard ratio (HR), 3.77; 95% CI, 1.45-9.61; p=0.005] and residual cancer burden (RCB) III (HR, 3.04; 95% CI, 1.09-9.9; p=0.04). Neither germline BRCA status nor HER2-low expression were associated with relapse. DiscussionThese data can be used to stratify patients and potentially guide treatment decision-making, identifying appropriate candidates for treatment intensi!cation especially in neo-/adjuvant setting

    Brca detection rate in an italian cohort of luminal early-onset and triple-negative breast cancer patients without family history: When biology overcomes genealogy

    Get PDF
    NCCN Guidelines recommend BRCA genetic testing in individuals with a probability >5% of being a carrier. Nonetheless, the cost-effectiveness of testing individuals with no tumor family history is still debated, especially when BRCA testing is offered by the national health service. Our analysis evaluated the rate of BRCA pathogenic or likely-pathogenic variants in 159 triplenegative breast cancer (TNBC) patients diagnosed ≤60 years, and 109 luminal-like breast cancer (BC) patients diagnosed ≤35 without breast and/or ovarian family histories. In TNBC patients, BRCA mutation prevalence was 22.6% (21.4% BRCA1). Mutation prevalence was 64.2% ≤30 years, 31.8% in patients aged 31–40, 16.1% for those aged 41–50 and 7.9% in 51–60s. A total of 40% of patients with estrogen receptors (ER) 1–9% were BRCA1 carriers. BRCA detection rate in early-onset BCs was 6.4% (4.6% BRCA2). Mutation prevalence was 0% between 0–25 years, 9% between 26–30 years and 6% between 31–35 years. In conclusion, BRCA testing is recommended in TNBC patients diagnosed ≤60 years, regardless of family cancer history or histotype, and by using immunohistochemical staining <10% for both ER and/PR. In luminal-like early-onset BC, a lower BRCA detection rate was observed, suggesting a role for other predisposing genes along with BRCA genetic testing

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Massive juvenile polyposis of the stomach in a family with SMAD4 gene mutation

    No full text
    Relatively little is known on the genotype-phenotype correlations between SMAD4 gene mutations, juvenile polyposis of the intestine and Hereditary Hemorrhagic Teleangectasia. We describe a family in which the proband (a 46-year old woman) had massive polyposis of the stomach—leading to surgery—with high-grade dysplasia at histology. Molecular analysis was carried out using Next Generation sequencing techniques with Miseq Illumina Platforms and a minimal coverage of 40 reads. In the proband, the analysis showed the presence of a truncating mutation in the SMAD4 gene (c.1213dupC, a variant previously associated with juvenile polyposis and Hereditary Hemorrhagic Teleangectasia). The same mutation was detected in two other members of the family (father and brother of the proband), who showed massive polypoid involvement of the stomach at gastroscopy. By taking the family history, subtle evidence of Hereditary Teleangectasia was found (nasal bleeding and arterovenous malformations) in the three gene carriers. Colonoscopy showed polyp occurrence in all three affected members with SMAD4 mutation, with prevalence of adenomatous lesions in one (father), of hamartomas in the brother, and of a mix of histological types in the proband. The main features of the family can be summarized as follows: (A) In hereditary juvenile polyposis, lesions of different histology can be detected at colonoscopy; (B) In the gene carriers of SMAD4 mutations, lesions of the stomach require careful surveillance and, when necessary, surgical interventions; (C) Signs and symptoms of Hereditary Hemorrhagic Teleangectasia should be suspected (and searched) in individuals with SMAD4 constitutional mutations
    corecore