18 research outputs found

    Chlorophyll content and temperature-dependent net photosynthesis and respiration rate in the lichen Cetraria aculeata

    No full text
    We studied polar and temperate samples of the lichen Cetraria aculeata to investigate whether genetical differences between photobionts are correlated with physiological properties of the lichen holobiont. Net photosynthesis and dark respiration (DR) at different temperatures (from 0 to 30 °C) and photon flux densities (from 0 to 1,200 mmol/m**2/s) were studied for four populations of Cetraria aculeata. Samples were collected from maritime Antarctica, Svalbard, Germany and Spain, representing different climatic situations. Sequencing of the photobiont showed that the investigated samples fall in the polar and temperate clade described in Fernández-Mendoza et al. (2011, doi:10.1111/j.1365-294X.2010.04993.x). Lichens with photobionts from these clades differ in their temperature optimum for photosynthesis, maximal net photosynthesis, maximal DR and chlorophyll content. Maximal net photosynthesis was much lower in Antarctica and Svalbard than in Germany and Spain. The difference was smaller when rates were expressed by chlorophyll content. The same is true for the temperature optima of polar (11 °C) and temperate (15 and 17 °C) lichens. Our results indicate that lichen mycobionts may adapt or acclimate to local environmental conditions either by selecting algae from regional pools or by regulating algal cell numbers (chlorophyll content) within the thallus

    Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution

    No full text
    Ecological and historical biogeography of lichens have rarely been studied in a concerted effort, but both aspects have to be taken into consideration when explaining the distributional patterns of species. This review summarizes, partly preliminary, results from a series of studies on phylogeography, ecophysiology and symbiotic interactions of the lichen Cetraria aculeata. This species is not only widespread but also occupies a very wide ecological niche. Evidence suggests that Cetraria aculeata has evolved and diversified in the Northern Hemisphere and colonised the Southern Hemisphere from there. Genetic isolation of populations indicates the absence of ongoing long range dispersal and genetic exchange between geographically isolated populations. We observe a hitherto unrecognized genetic diversity that may indicate ecotypic differentiation and speciation processes. Mediterranean and Polar populations differ not only genetically, but also in ecophysiological properties. Ongoing common garden experiments will have to show whether genetically fixed adaptation or acclimation is responsible for these differences. The genetic structure of the photobiont is best explained by climatic differences between localities, but co-dispersal with the mycobiont plays an important role as well. Taken together, these results indicate that a photobiont switch in the past enabled C. aculeata to widen its ecological niche, with subsequent genetic isolation of populations. Photobiont switches may play a crucial role in speciation processes of lichens. A combination of ecophysiological and phylogeographic studies with experimental approaches is necessary to better understand the reaction of lichens to changing environmental conditions

    Haplotype and nucleotide characteristics of photobiont and mycobiont gene sequences in the lichen Cetraria aculeata

    No full text
    Lichens, symbiotic associations of fungi (mycobionts) and green algae or cyanobacteria (photobionts), are poikilohydric organisms that are particularly well adapted to withstand adverse environmental conditions. Terrestrial ecosystems of the Antarctic are therefore largely dominated by lichens. The effects of global climate change are especially pronounced in the maritime Antarctic and it may be assumed that the lichen vegetation will profoundly change in the future. The genetic diversity of populations is closely correlated to their ability to adapt to changing environmental conditions and to their future evolutionary potential. In this study, we present evidence for low genetic diversity in Antarctic mycobiont and photobiont populations of the widespread lichen Cetraria aculeata. We compared between 110 and 219 DNA sequences from each of three gene loci for each symbiont. A total of 222 individuals from three Antarctic and nine antiboreal, temperate and Arctic populations were investigated. The mycobiont diversity is highest in Arctic populations, while the photobionts are most diverse in temperate regions. Photobiont diversity decreases significantly towards the Antarctic but less markedly towards the Arctic, indicating that ecological factors play a minor role in determining the diversity of Antarctic photobiont populations. Richness estimators calculated for the four geographical regions suggest that the low genetic diversity of Antarctic populations is not a sampling artefact. Cetraria aculeata appears to have diversified in the Arctic and subsequently expanded its range into the Southern Hemisphere. The reduced genetic diversity in the Antarctic is most likely due to founder effects during long-distance colonization

    Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont

    No full text
    Lichens, symbiotic associations of fungi (mycobionts) and green algae or cyanobacteria (photobionts), are poikilohydric organisms that are particularly well adapted to withstand adverse environmental conditions. Terrestrial ecosystems of the Antarctic are therefore largely dominated by lichens. The effects of global climate change are especially pronounced in the maritime Antarctic and it may be assumed that the lichen vegetation will profoundly change in the future. The genetic diversity of populations is closely correlated to their ability to adapt to changing environmental conditions and to their future evolutionary potential. In this study, we present evidence for low genetic diversity in Antarctic mycobiont and photobiont populations of the widespread lichen Cetraria aculeata. We compared between 110 and 219 DNA sequences from each of three gene loci for each symbiont. A total of 222 individuals from three Antarctic and nine antiboreal, temperate and Arctic populations were investigated. The mycobiont diversity is highest in Arctic populations, while the photobionts are most diverse in temperate regions. Photobiont diversity decreases significantly towards the Antarctic but less markedly towards the Arctic, indicating that ecological factors play a minor role in determining the diversity of Antarctic photobiont populations. Richness estimators calculated for the four geographical regions suggest that the low genetic diversity of Antarctic populations is not a sampling artefact. Cetraria aculeata appears to have diversified in the Arctic and subsequently expanded its range into the Southern Hemisphere. The reduced genetic diversity in the Antarctic is most likely due to founder effects during long-distance colonization
    corecore