34 research outputs found

    Genetic Evidence for Inhibition of Bacterial Division Protein FtsZ by Berberine

    Get PDF
    Background: Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools. Methodology/Principal Findings: First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells

    Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

    Get PDF
    Filarial nematode parasites are responsible for a number of devastating diseases in humans and animals. These include lymphatic filariasis and onchocerciasis that afflict 150 million people in the tropics and threaten the health of over one billion. The parasites possess intracellular bacteria, Wolbachia, which are needed for worm survival. Clearance of these bacteria with certain antibiotics leads to parasite death. These findings have pioneered the approach of using antibiotics to treat and control filarial infections. In the present study, we have investigated the cell division process in Wolbachia for new drug target discovery. We have identified the essential cell division protein FtsZ, which has a GTPase activity, as an attractive Wolbachia drug target. We describe the molecular characterization and catalytic properties of the enzyme and demonstrate that the GTPase activity is inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. We also found that berberine was effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel antibiotic approach for controlling filarial infection

    In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    Get PDF
    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents

    Artificial Polyploidy Improves Bacterial Single Cell Genome Recovery

    Get PDF
    BACKGROUND: Single cell genomics (SCG) is a combination of methods whose goal is to decipher the complete genomic sequence from a single cell and has been applied mostly to organisms with smaller genomes, such as bacteria and archaea. Prior single cell studies showed that a significant portion of a genome could be obtained. However, breakages of genomic DNA and amplification bias have made it very challenging to acquire a complete genome with single cells. We investigated an artificial method to induce polyploidy in Bacillus subtilis ATCC 6633 by blocking cell division and have shown that we can significantly improve the performance of genomic sequencing from a single cell. METHODOLOGY/PRINCIPAL FINDINGS: We inhibited the bacterial cytoskeleton protein FtsZ in B.subtilis with an FtsZ-inhibiting compound, PC190723, resulting in larger undivided single cells with multiple copies of its genome. qPCR assays of these larger, sorted cells showed higher DNA content, have less amplification bias, and greater genomic recovery than untreated cells. SIGNIFICANCE: The method presented here shows the potential to obtain a nearly complete genome sequence from a single bacterial cell. With millions of uncultured bacterial species in nature, this method holds tremendous promise to provide insight into the genomic novelty of yet-to-be discovered species, and given the temporary effects of artificial polyploidy coupled with the ability to sort and distinguish differences in cell size and genomic DNA content, may allow recovery of specific organisms in addition to their genomes

    Control of bovine mastitis: old and recent therapeutic approaches

    Get PDF
    Mastitis is defined as the inflammatory response resulting of the infection of the udder tissue and it is reported in numerous species, namely in domestic dairy animals. This pathology is the most frequent disease of dairy cattle and can be potentially fatal. Mastitis is an economically important pathology associated with reduced milk production, changes in milk composition and quality, being considered one of the most costly to dairy industry. Therefore, the majority of research in the field has focused on control of bovine mastitis and many efforts are being made for the development of new and effective anti-mastitis drugs. Antibiotic treatment is an established component of mastitis control programs; however, the continuous search for new therapeutic alternatives, effective in the control and treatment of bovine mastitis, is urgent. This review will provide an overview of some conventional and emerging approaches in the management of bovine mastitis infections.F. Gomes acknowledge the financial support of the Portuguese Foundation for Science and Technology through the Grant SFRH/BPD/84488/2012 and for financial support to the CEB research center

    Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde

    No full text
    10.1016/j.bcp.2007.06.029Biochemical Pharmacology746831-840BCPC

    Computer aided design of FtsZ targeting oligopeptides

    No full text
    10.1039/c2ra21886kRSC Advances361739-174

    Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Spores as Monitored by Laser Tweezers Raman Spectroscopy

    Get PDF
    Article Authors Metrics Comments Related Content Abstract Introduction Materials and Methods Results Discussion Supporting Information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage (0) Figures Abstract Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis)
    corecore