11 research outputs found

    Metal Homeostasis and Exposure in Distinct Phenotypic Subtypes of Insulin Resistance among Children with Obesity

    Get PDF
    Background: Trace elements and heavy metals have proven pivotal roles in childhood obesity and insulin resistance. However, growing evidence suggests that insulin resistance could encompass distinct phenotypic subtypes. Methods: Herein, we performed a comprehensive metallomics characterization of plasma samples from children and adolescents with obesity and concomitant insulin resistance, who were stratified as early (N = 17, 11.4 ± 2.4 years), middle (N = 16, 11.8 ± 1.9 years), and late (N = 33, 11.7 ± 2.0 years) responders according to the insulin secretion profile in response to an oral glucose tolerance test. To this end, we employed a high-throughput method aimed at determining the biodistribution of various essential and toxic elements by analyzing total metal contents, metal-containing proteins, and labile metal species. Results: Compared with the early responders, participants with delayed glucose-induced hyperinsulinemia showed a worsened insulin resistance (HOMA-IR, 4.5 vs. 3.8) and lipid profile (total cholesterol, 160 vs. 144 mg/dL; LDL-cholesterol, 99 vs. 82 mg/dL), which in turn was accompanied by sharpened disturbances in the levels of plasmatic proteins containing chromium (4.8 vs. 5.1 µg/L), cobalt (0.79 vs. 1.2 µg/L), lead (0.021 vs. 0.025 µg/L), and arsenic (0.077 vs. 0.17 µg/L). A correlation analysis demonstrated a close inter-relationship among these multielemental perturbations and the characteristic metabolic complications occurring in childhood obesity, namely impaired insulin-mediated metabolism of carbohydrates and lipids. Conclusions: These findings highlight the crucial involvement that altered metal homeostasis and exposure may have in regulating insulin signaling, glucose metabolism, and dyslipidemia in childhood obesity.This research was funded by the Spanish Government through Instituto de Salud Carlos III (PI22/01899). AGD is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and RGD is a recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Exploring the association between circulating trace elements, metabolic risk factors, and the adherence to a Mediterranean diet among children and adolescents with obesity

    Get PDF
    Diet is one of the most important modifiable lifestyle factors for preventing and treating obesity. In this respect, the Mediterranean diet (MD) has proven to be a rich source of a myriad of micronutrients with positive repercussions on human health. Herein, we studied an observational cohort of children and adolescents with obesity (N = 26) to explore the association between circulating blood trace elements and the degree of MD adherence, as assessed through the KIDMED questionnaire. Participants with higher MD adherence showed better glycemic/insulinemic control and a healthier lipid profile, as well as raised plasma levels of selenium, zinc, cobalt, molybdenum, and arsenic, and increased erythroid content of selenium. Interestingly, we found that these MD-related mineral alterations were closely correlated with the characteristic metabolic complications behind childhood obesity, namely hyperglycemia, hyperinsulinemia, and dyslipidemia (p 0.35). These findings highlight the pivotal role that dietary trace elements may play in the pathogenesis of obesity and related disorders.This research was partially funded by the Spanish Government through Instituto de Salud Carlos III- (PI22/01899). ÁG-D was supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16INCO24), and RG-D was recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Sexually dimorphic metal alterations in childhood obesity are modulated by a complex interplay between inflammation, insulin, and sex hormones

    Get PDF
    Although growing evidence points to a pivotal role of perturbed metal homeostasis in childhood obesity, sexual dimorphisms in this association have rarely been investigated. In this study, we applied multi-elemental analysis to plasma and erythrocyte samples from an observational cohort comprising children with obesity, with and without insulin resistance, and healthy control children. Furthermore, a wide number of variables related to carbohydrate and lipid metabolism, inflammation, and sex hormones were also determined. Children with obesity, regardless of sex and insulin resistance status, showed increased plasma copper-to-zinc ratios. More interestingly, obesity-related erythroid alterations were found to be sex-dependent, with increased contents of iron, zinc, and copper being exclusively detected among female subjects. Our findings suggest that a sexually dimorphic hormonal dysregulation in response to a pathological cascade involving inflammatory processes and hyperinsulinemia could be the main trigger of this female-specific intracellular sequestration of trace elements. Therefore, the present study highlights the relevance of genotypic sex as a susceptibility factor influencing the pathogenic events behind childhood obesity, thereby opening the door to develop sex-personalized approaches in the context of precision medicine.INiBICA, Grant/Award Number: LII19/16IN-CO24; Instituto de Salud Carlos III, Grant/Award Numbers: CP21/00120, PI22/0189

    Trace elements as potential modulators of puberty-induced amelioration of oxidative stress and inflammation in childhood obesity

    Get PDF
    Although puberty is known to influence obesity progression, the molecular mechanisms underlying the role of sexual maturation in obesity-related complications remains largely unexplored. Here, we delve into the impact of puberty on the most relevant pathogenic hallmarks of obesity, namely oxidative stress and inflammation, and their association with trace element blood status. To this end, we studied a well-characterized observational cohort comprising prepubertal (N = 46) and pubertal (N = 48) children with obesity. From all participants, plasma and erythrocyte samples were collected and subjected to metallomics analysis and determination of classical biomarkers of oxidative stress and inflammation. Besides the expected raise of sexual hormones, pubertal children displayed better inflammatory and oxidative control, as reflected by lower levels of C-reactive protein and oxidative damage markers, as well as improved antioxidant defense. This was in turn accompanied by a healthier multielemental profile, with increased levels of essential elements involved in the antioxidant system and metabolic control (metalloproteins containing zinc, molybdenum, selenium, and manganese) and decreased content of potentially deleterious species (total copper, labile free iron). Therefore, our findings suggest that children with obesity have an exacerbated inflammatory and oxidative damage at early ages, which could be ameliorated during pubertal development by the action of trace element-mediated buffering mechanisms.This research was funded by the Spanish Government through Instituto de Salud Carlos III (PI22/01899, PI18/01316). Állvaro González-Domínguez is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and Raúl González-Domínguez is recipient of a “Miguel Servet” fellowship funded by Instituto de Salud Carlos III (CP21/00120)

    Altered Metal Homeostasis Associates with Inflammation, Oxidative Stress, Impaired Glucose Metabolism, and Dyslipidemia in the Crosstalk between Childhood Obesity and Insulin Resistance

    Get PDF
    Metals are redox-active substances that participate in central biological processes and may be involved in a multitude of pathogenic events. However, considering the inconsistencies reported in the literature, further research is crucial to disentangle the role of metal homeostasis in childhood obesity and comorbidities using well-characterized cohorts and state-of-the-art analytical methods. To this end, we studied an observational population comprising childrenwith obesity and insulin resistance, children with obesity without insulin resistance, and healthy control children. A multi-elemental approach based on the size-fractionation of metal species was applied to quantify the total content of various essential and toxic elements in plasma and erythrocyte samples, and to simultaneously investigate the metal fractions conforming the metalloproteome and the labile metal pool. The most important disturbances in childhood obesity were found to be related to elevated circulating copper levels, decreased content of plasmatic proteins containing chromium, cobalt, iron, manganese, molybdenum, selenium, and zinc, as well as the sequestration of copper, iron, and selenium within erythrocytes. Interestingly, these metal disturbances were normally exacerbated among children with concomitant insulin resistance, and in turn were associated to other characteristic pathogenic events, such as inflammation, oxidative stress, abnormal glucose metabolism, and dyslipidemia. Therefore, this study represents one-step further towards a better understanding of the involvement of metals in the crosstalk between childhood obesity and insulin resistance.This research was partially funded by the Spanish Government through Instituto de Salud Carlos III (CP21/00120, PI18/01316). Á.G.-D. is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cádiz (LII19/16IN-CO24), and R.G.-D. is recipient of a “Miguel Servet” fellowship (CP21/00120) funded by Instituto de Salud Carlos III

    Iron Metabolism in Obesity and Metabolic Syndrome

    Get PDF
    Obesity is an excessive adipose tissue accumulation that may have detrimental effects on health. Particularly, childhood obesity has become one of the main public health problems in the 21st century, since its prevalence has widely increased in recent years. Childhood obesity is intimately related to the development of several comorbidities such as nonalcoholic fatty liver disease, dyslipidemia, type 2 diabetes mellitus, non-congenital cardiovascular disease, chronic inflammation and anemia, among others. Within this tangled interplay between these comorbidities and associated pathological conditions, obesity has been closely linked to important perturbations in iron metabolism. Iron is the second most abundant metal on Earth, but its bioavailability is hampered by its ability to form highly insoluble oxides, with iron deficiency being the most common nutritional disorder. Although every living organism requires iron, it may also cause toxic oxygen damage by generating oxygen free radicals through the Fenton reaction. Thus, iron homeostasis and metabolism must be tightly regulated in humans at every level (i.e., absorption, storage, transport, recycling). Dysregulation of any step involved in iron metabolism may lead to iron deficiencies and, eventually, to the anemic state related to obesity. In this review article, we summarize the existent evidence on the role of the most recently described components of iron metabolism and their alterations in obesity

    Blunted Reducing Power Generation in Erythrocytes Contributes to Oxidative Stress in Prepubertal Obese Children with Insulin Resistance

    Get PDF
    Childhood obesity, and specifically its metabolic complications, are related to deficient antioxidant capacity and oxidative stress. Erythrocytes are constantly exposed to multiple sources of oxidative stress; hence, they are equipped with powerful antioxidant mechanisms requiring permanent reducing power generation and turnover. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are two key enzymes on the pentose phosphate pathway. Both enzymes supply reducing power by generating NADPH, which is essential for maintaining the redox balance within the cell and the activity of other antioxidant enzymes. We hypothesized that obese children with insulin resistance would exhibit blunted G6PDH and 6PGDH activities, contributing to their erythrocytes' redox status imbalances. We studied 15 control and 24 obese prepubertal children, 12 of whom were insulin-resistant according to an oral glucose tolerance test (OGTT). We analyzed erythroid malondialdehyde (MDA) and carbonyl group levels as oxidative stress markers. NADP+/NADPH and GSH/GSSG were measured to determine redox status, and NADPH production by both G6PDH and 6PGDH was assayed spectrophotometrically to characterize pentose phosphate pathway activity. Finally, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) activities were also assessed. As expected, MDA and carbonyl groups levels were higher at baseline and along the OGTT in insulin-resistant children. Both redox indicators showed an imbalance in favor of the oxidized forms along the OGTT in the insulin-resistant obese group. Additionally, the NADPH synthesis, as well as GR activity, were decreased. H2O2 removing enzyme activities were depleted at baseline in both obese groups, although after sugar intake only metabolically healthy obese participants were able to maintain their catalase activity. No change was detected in SOD activity between groups. Our results show that obese children with insulin resistance present higher levels of oxidative damage, blunted capacity to generate reducing power, and hampered function of key NADPH-dependent antioxidant enzymes.This research was funded by Spanish Government through the Carlos III Health Institute (Sanitary Research Fund (FIS)), code PI18/01316. A.G.-D. is supported by an intramural grant from the Biomedical Research and Innovation Institute of Cadiz (INiBICA), code LII19/16IN-CO24

    Hybrid Closed-Loop System Achieves Optimal Perioperative Glycemia in a Boy With Type 1 Diabetes: A Case Report

    Get PDF
    The goal in type 1 diabetes (T1D) therapy is to maintain optimal glycemic control under any circumstance. Diabetes technology is in continuous development to achieve this goal. The most advanced Food and Drug Administration- and European Medicines Agency-approved devices are hybrid closed-loop (HCL) systems, which deliver insulin subcutaneously in response to glucose levels according to an automated algorithm. T1D is frequently encountered in the perioperative period. The latest international guidelines for the management of children with diabetes undergoing surgery include specific adjustments to the patient's insulin therapy, hourly blood glucose monitoring, and intravenous (IV) insulin infusion. However, these guidelines were published while the HCL systems were still marginal. We present a case of a 9-year-old boy with long-standing T1D, under HCL system therapy for the last 9 months, and needing surgery for an appendectomy. We agreed with the family, the surgical team, and the anesthesiologists to continue HCL insulin infusion, without further adjustments, hourly blood glucose checks or IV insulin, while monitoring closely. The HCL system was able to keep glycemia within range for the total duration of the overnight fast, the surgery, and the initial recovery, without any external intervention or correction bolus. This is, to the best of our knowledge, the first reported pediatric case to undergo major surgery using a HCL system, and the results were absolutely satisfactory for the patient, his family, and the medical team. We believe that technology is ripe enough to advocate for a "take your pump to surgery" message, minimizing the impact and our interventions. The medical team may discuss this possibility with the family and patients

    12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    Get PDF
    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo
    corecore