8,339 research outputs found

    Two dynamic exponents in the resistive transition of fully frustrated Josephson-junction arrays

    Full text link
    We study the resistive transition in Josephson-junction arrays at f=1/2f=1/2 flux quantum per plaquette by dynamical simulations of the resistively-shunted-junction model. The current-voltage scaling and critical dynamics of the phases are found to be well described by the same critical temperature and static exponents as for the chiral (vortex-lattice) transition. Although this behavior is consistent with a single transition scenario, where phase and chiral variables order simultaneously, two different dynamic exponents result for phase coherence and chiral order.Comment: 4 pages, 3 figures, to appear in Europhysics Letter

    Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019)

    Get PDF
    The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes

    Lagrangian Volume Deformations around Simulated Galaxies

    Full text link
    We present a detailed analysis of the local evolution of 206 Lagrangian Volumes (LVs) selected at high redshift around galaxy seeds, identified in a large-volume Λ\Lambda cold dark matter (Λ\LambdaCDM) hydrodynamical simulation. The LVs have a mass range of 1−1500×1010M⊙1 - 1500 \times 10^{10} M_\odot. We follow the dynamical evolution of the density field inside these initially spherical LVs from z=10z=10 up to zlow=0.05z_{\rm low} = 0.05, witnessing highly non-linear, anisotropic mass rearrangements within them, leading to the emergence of the local cosmic web (CW). These mass arrangements have been analysed in terms of the reduced inertia tensor IijrI_{ij}^r, focusing on the evolution of the principal axes of inertia and their corresponding eigendirections, and paying particular attention to the times when the evolution of these two structural elements declines. In addition, mass and component effects along this process have also been investigated. We have found that deformations are led by dark matter dynamics and they transform most of the initially spherical LVs into prolate shapes, i.e. filamentary structures. An analysis of the individual freezing-out time distributions for shapes and eigendirections shows that first most of the LVs fix their three axes of symmetry (like a skeleton) early on, while accretion flows towards them still continue. Very remarkably, we have found that more massive LVs fix their skeleton earlier on than less massive ones. We briefly discuss the astrophysical implications our findings could have, including the galaxy mass-morphology relation and the effects on the galaxy-galaxy merger parameter space, among others.Comment: 23 pages, 20 figures. Minor editorial improvement
    • …
    corecore