20 research outputs found

    rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19

    Get PDF
    IntroductionNumerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis.MethodsIn current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing.Results and discussionsA P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants

    Safety and immunogenicity of rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine against SARS-CoV-2 in healthy adolescents: an open-label, non-randomized, multicenter, phase 1/2, dose-escalation study

    Get PDF
    To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost “Sputnik V” vaccine administered at 1/10 and 1/5 doses to adolescents aged 12–17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants.;Clinical Trial RegistrationClinicalTrials.gov, NCT04954092, LP-007632

    Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis.

    No full text
    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection

    SARS-CoV-2 evolution in a patient with secondary B-cell immunodeficiency: A clinical case

    No full text
    The article highlights the course of long-term SARS-CoV-2 infection in a patient with a secondary immunodeficiency developed with B-cell-depleting therapy of the underlying disease. Analysis of the intrapatient virus evolution revealed an inpatient S:G75A mutation that alters the 72GTNGTKR78 motif of the S-protein, with a possible role in binding to alternative cellular receptors. Therapy with a ready-made COVID-19-globulin preparation (native human immunoglobulin G (IgG) derived from the plasma of convalescent COVID-19-patients) resulted in rapid improvement of the patient’s condition, fast, and stable elimination of the virus, and passive immunization of the patient for at least 30 days. The results suggest the use of products containing neutralizing antibodies opens new prospects for treatment algorithms for patients with persistent coronavirus infection, as well as for passive immunization schemes for patients with a presumably reduced specific response to vaccination

    Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses

    No full text
    <div><p>Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple <i>in vitro</i> and <i>in vivo</i> readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-Îł production) of splenic CD4+ and CD8+ T cells following <i>in vitro</i> restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2 receptors dramatically enhances activation of both the humoral and cellular branches of adaptive immunity and suggests that inclusion of agonists of these receptors in standard alum-based adjuvants could be used to improve the effectiveness of vaccination.</p></div

    Vaccine formulations containing a combination of TLR4 and NOD2 agonists significantly enhance maturation of BMDC compared to formulations containing individual PRR agonists.

    No full text
    <p>BMDCs were harvested on day 8 of culture and incubated in 24-well plates for 24 hours with vaccine formulations. Expression of the maturation markers, CD80 <b>(A)</b>, CD86 <b>(B)</b>, and major histocompatibility complex (MHC) class II <b>(C)</b> was assessed by flow cytometric analysis of 5x10<sup>4</sup> CD11c+ cells. Mean MFI values (indicating expression level) ± SEM from two independent experiments with 5 replicates each are shown. * indicates significant difference (P≤0.05) between formulations containing MDP or MPLA individually and the formulation without PRR agonists. # indicates significant difference (P≤0.05) between Alum+OVA+MDP+MPLA treatment and Alum+OVA+MPLA or Alum+OVA+MDP (Student’s t-test). <b>(D)</b> Cytokine levels were measured in cell-free culture supernatants collected 24 hours after addition of vaccine formulations to BMDCs (4x10<sup>4</sup> cells/well) using bead-based immunoassay. Data represent mean ± SD. * indicates significant difference (P≤0.05) between formulations containing MDP or MPLA individually and the formulation without PRR agonists. # indicates significant difference (P≤0.05) between Alum+OVA+MDP+MPLA treatment and Alum+OVA+MPLA or Alum+OVA+MDP (Student’s t-test).</p

    Vaccine formulations containing a combination of TLR4 and NOD2 agonists lead to a stronger ovalbumin-specific antibody response in mice than formulations containing individual PRR agonists.

    No full text
    <p>Mice (n = 5/group) were immunized s.c. twice with alum-based vaccine formulations: Alum+OVA, Alum+OVA+MDP, Alum+OVA+MPLA, and Alum+OVA+MDP+MPLA. Controls included naıve (untreated) mice and mice immunized with soluble OVA (no Alum or PRR agonist). Blood was collected from mice 14 days after the last immunization and serum levels of ovalbumin-specific total IgG (A), IgG1 (B), IgG2a (C), IgG2b (D) and IgG2c (E) antibodies were detected by ELISA. The mean for 5 mice/group ± SEM is shown. Experiment was repeated three times with analogous results.</p
    corecore