3,629 research outputs found
Analytical Hartree-Fock gradients for periodic systems
We present the theory of analytical Hartree-Fock gradients for periodic
systems as implemented in the code CRYSTAL. We demonstrate how derivatives of
the integrals can be computed with the McMurchie-Davidson algorithm. Highly
accurate gradients with respect to nuclear coordinates are obtained for systems
periodic in 0,1,2 or 3 dimensions.Comment: accepted by International Journal of Quantum Chemistr
Density functional study of the adsorption of K on the Ag(111) surface
Full-potential gradient corrected density functional calculations of the
adsorption of potassium on the Ag(111) surface have been performed. The
considered structures are Ag(111) (root 3 x root 3) R30degree-K and Ag(111) (2
x 2)-K. For the lower coverage, fcc, hcp and bridge site; and for the higher
coverage all considered sites are practically degenerate.
Substrate rumpling is most important for the top adsorption site. The bond
length is found to be nearly identical for the two coverages, in agreement with
recent experiments. Results from Mulliken populations, bond lengths, core level
shifts and work functions consistently indicate a small charge transfer from
the potassium atom to the substrate, which is slightly larger for the lower
coverage.Comment: to appear in Phys Rev
Ground-state properties of rutile: electron-correlation effects
Electron-correlation effects on cohesive energy, lattice constant and bulk
compressibility of rutile are calculated using an ab-initio scheme. A
competition between the two groups of partially covalent Ti-O bonds is the
reason that the correlation energy does not change linearly with deviations
from the equilibrium geometry, but is dominated by quadratic terms instead. As
a consequence, the Hartree-Fock lattice constants are close to the experimental
ones, while the compressibility is strongly renormalized by electronic
correlations.Comment: 1 figure to appear in Phys. Rev.
Ground state properties of heavy alkali halides
We extend previous work on alkali halides by calculations for the heavy-atom
species RbF, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI, and RbI. Relativistic
effects are included by means of energy-consistent pseudopotentials,
correlations are treated at the coupled-cluster level. A striking deficiency of
the Hartree-Fock approach are lattice constants deviating by up to 7.5 % from
experimental values which is reduced to a maximum error of 2.4 % by taking into
account electron correlation. Besides, we provide ab-initio data for in-crystal
polarizabilities and van der Waals coefficients.Comment: accepted by Phys. Rev.
Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented
Structure prediction based on ab initio simulated annealing for boron nitride
Possible crystalline modifications of chemical compounds at low temperatures
correspond to local minima of the energy landscape. Determining these minima
via simulated annealing is one method for the prediction of crystal structures,
where the number of atoms per unit cell is the only information used. It is
demonstrated that this method can be applied to covalent systems, at the
example of boron nitride, using ab initio energies in all stages of the
optimization, i.e. both during the global search and the subsequent local
optimization. Ten low lying structure candidates are presented, including both
layered structures and 3d-network structures such as the wurtzite and zinc
blende types, as well as a structure corresponding to the beta-BeO type
Electronic structure of the molecule based magnet Cu PM(NO3)2 (H2O)2
We present density functional calculations on the molecule based S=1/2
antiferromagnetic chain compound Cu PM(NO3)2 (H2O)2; PM = pyrimidine. The
properties of the ferro- and antiferromagnetic state are investigated at the
level of the local density approximation and with the hybrid functional B3LYP.
Spin density maps illustrate the exchange path via the pyrimidine molecule
which mediates the magnetism in the one-dimensional chain. The computed
exchange coupling is antiferromagnetic and in reasonable agreement with the
experiment. It is suggested that the antiferromagnetic coupling is due to the
possibility of stronger delocalization of the charges on the nitrogen atoms,
compared to the ferromagnetic case. In addition, computed isotropic and
anisotropic hyperfine interaction parameters are compared with recent NMR
experiments
- …