19 research outputs found
The Uyghur population and genetic susceptibility to type 2 diabetes: potential role for variants in CAPN10, APM1 and FUT6 genes
Genome-wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case–control study, we genotyped 13 single-nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267-A, rs1501299-T, and rs3760776-T had a 2.24-fold [OR (95% CI): 1.35–3.71], 0.59-fold [OR (95% CI): 0.39–0.91], 0.57-fold [OR (95% CI): 0.34–0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non-obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine
The Uyghur Population And Genetic Susceptibility To Type 2 Diabetes: Potential Role For Variants In CDKAL1, JAZF1, and IGF1 Genes
Substantial evidence suggests that type 2 diabetes mellitus (T2DM) is a multi-factorial disease with a strong genetic component. A list of genetic susceptibility loci in populations of European and Asian ancestry has been established in the literature. Little is known on the inter-ethnic contribution of such established functional polymorphic variants. We performed a case-control study to explore the genetic susceptibility of 16 selected T2DM-related SNPs in a cohort of 102 Uyghur objects (51 cases and 51 controls). Three of the 16 SNPs showed significant association with T2DM in the Uyghur population. There were significant differences between the T2DM and control groups in frequencies of the risk allelic distributions of rs7754840 (CDKAL1) (p=0.014), rs864745 (JAZF1) (p=0.032), and rs35767 (IGF1) (p=0.044). Carriers of rs7754840-C, rs35767-A, and rs864745-C risk alleles had a 2.32-fold [OR (95% CI): 1.19-4.54], 2.06-fold [OR (95% CI): 1.02-4.17], 0.48-fold [OR (95% CI): 0.24-0.94] increased risk for T2DM, respectively. The cumulative risk allelic scores of these 16 SNPs differed significantly between the T2DM patients and the controls [17.1±8.1 vs. 15.4±7.3; OR (95%CI): 1.27(1.07-1.50), p=0.007]. This is the first study to evaluate genomic variation at 16 SNPs in respective T2DM candidate genes for the Uyghur population compared with other ethnic groups. The SNP rs7754840 in CDKAL1, rs864745 in JAZF1, and rs35767 in IGF1 might serve as potential susceptibility loci for T2DM in Uyghurs. We suggest a broader capture and study of the world populations, including who that are hitherto understudied, are essential for a comprehensive understanding of the genetic/genomic basis of T2DM
Glycosylation of IgG associates with hypertension and type 2 diabetes mellitus comorbidity in the Chinese Muslim ethnic minorities and the Han Chinese
Objectives: Hypertension and type 2 diabetes mellitus comorbidity (HDC) is common, which confers a higher risk of cardiovascular disease than the presence of either condition alone. Describing the underlying glycomic changes of immunoglobulin G (IgG) that predispose individuals to HDC may help develop novel protective immune-targeted and anti-inflammatory therapies. Therefore, we investigated glycosylation changes of IgG associated with HDC. Methods: The IgG N-glycan profiles of 883 plasma samples from the three northwestern Chinese Muslim ethnic minorities and the Han Chinese were analyzed by ultra-performance liquid chromatography instrument. Results: We found that 12 and six IgG N-glycan traits showed significant associations with HDC in the Chinese Muslim ethnic minorities and the Han Chinese, respectively, after adjustment for potential confounders and false discovery rate. Adding the IgG N-glycan traits to the baseline models, the area under the receiver operating characteristic curves (AUCs) of the combined models differentiating HDC from hypertension (HTN), type 2 diabetes mellitus (T2DM), and healthy individuals were 0.717, 0.747, and 0.786 in the pooled samples of Chinese Muslim ethnic minorities, and 0.828, 0.689, and 0.901 in the Han Chinese, respectively, showing improved discriminating performance than both the baseline models and the glycan-based models. Conclusion: Altered IgG N-glycan profiles were shown to associate with HDC, suggesting the involvement of inflammatory processes of IgG glycosylation. The alterations of IgG N-glycome, illustrated here for the first time in HDC, demonstrate a biomarker potential, which may shed light on future studies investigating their potential for monitoring or preventing the progression from HTN or T2DM towards HDC
The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the Uygur, Kazak, Kirgiz, and Tajik populations
Hypertension results from the interaction of genetic and acquired factors. IgG occurs in the form of different subclasses, of which the effector functions show significant variation. The detailed differences between the glycosylation profiles of the individual IgG subclasses may be lost in a profiling method for total IgG N-glycosylation. In this study, subclass-specific IgG Fc glycosylation profile was investigated in the four northwestern Chinese minority populations, namely, Uygur (UIG), Kazak (KZK), Kirgiz (KGZ), and Tajik (TJK), composed of 274 hypertensive patients and 356 healthy controls. The results showed that ten directly measured IgG N-glycan traits (i.e., IgG1G0F, IgG2G0F, IgG2G1FN, IgG2G1FS, IgG2G2S, IgG4G0F, IgG4G1FS, IgG4G1S, IgG4G2FS, and IgG4G2N) representing galactosylation and sialylation are significantly associated with hypertension, with IgG4 consistently showing weaker associations of its sialylation, across the four ethnic groups. We observed a modest improvement on the AUC of ROC curve when the IgG Fc N-glycan traits are added into the glycan-based model (difference between AUCs, 0.044, 95% CI: 0.016-0.072, P = 0.002). The AUC of the diagnostic model indicated that the subclass-specific IgG Fc N-glycan profiles provide more information reinforcing current models utilizing age, gender, BMI, and ethnicity, and demonstrate the potential of subclass-specific IgG Fc N-glycosylation profiles to serve as a biomarker for hypertension. Further research is however required to determine the additive value of subclass-specific IgG Fc N-glycosylation on top of biomarkers, which are currently used
Glycomics for type 2 diabetes biomarker discovery: Promise of immunoglobulin G subclass-specific fragment crystallizable N-glycosylation in the Uyghur population
Aberrant immunoglobulin G (IgG) N-glycosylation offers new prospects to detect changes in cell metabolism and by extension, for biomarker discovery in type 2 diabetes mellitus (T2DM). However, past studies did not analyze the individual IgG subclasses in relation to T2DM pathophysiology. We report here original findings through a comparison of the IgG subclass-specific fragment crystallizable (Fc) glycan biosignatures in 115 T2DM patients with 122 healthy controls within the Uyghur population in China. IgG Fc glycosylation profiles were analyzed using nano-liquid chromatography-mass spectrometry to exclude changes attributed to fragment antigen binding N-glycosylation. After correction for clinical covariates, 27 directly measured and 4 derived glycan traits of the IgG subclass-specific N-glycopeptides were significantly associated with T2DM. Furthermore, we observed in T2DM a decrease in bisecting N-acetylglucosamine of IgG2 and agalactosylation of IgG4, and an increase in sialylation of IgG4 and digalactosylation of IgG2. Classification model based on IgG subclass-specific N-glycan traits was able to distinguish patients with T2DM from controls with an area under the receiver operating characteristic curve of 0.927 (95% confidence interval 0.894-0.960, p \u3c 0.001). In conclusion, a robust association between the IgG subclass-specific Fc N-glycomes and T2DM was observed in the Uyghur population sample in China, suggesting a potential for the IgG Fc glycosylation as a biomarker candidate for type 2 diabetes. The integration of glycomics with other system science biomarkers might offer further hope for innovation in diagnosis and treatment of T2DM in the future. Finally, it is noteworthy that Population Glycomics is an emerging approach to biomarker discovery for common complex diseases
The fine-scale genetic structure and evolution of the Japanese population
<div><p>The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.</p></div
Relation between locus-specific genetic differentiation and positive selection in Southeast Asia and South Asia.
<p><b>a</b> and <b>c</b>) Neighbor-joining phylogenetic tree of the genetic clusters. <b>b</b> and <b>d</b>) The proportion of positively selected windows (in vertical axis) is plotted across 20 HF<sub>ST</sub> bins of 4-SNP windows (in horizontal axis); the average proportion is indicated by a gray line. Asterisk (*) indicates significant enrichment of positively selected windows in a specific bin, compared to the whole-genome average (Fisher’s exact test <i>P</i> < 0.01/20). Triangles above the plot indicate the HF<sub>ST</sub> bins, to which genes known to be under selection belong [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0185487#pone.0185487.ref029" target="_blank">29</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0185487#pone.0185487.ref034" target="_blank">34</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0185487#pone.0185487.ref036" target="_blank">36</a>,<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0185487#pone.0185487.ref039" target="_blank">39</a>].</p