472 research outputs found

    CaCu2(SeO3)2Cl2: spin-1/2 Heisenberg chain compound with complex frustrated interchain couplings

    Full text link
    We report the crystal structure, magnetization measurements, and band-structure calculations for the spin-1/2 quantum magnet CaCu2(SeO3)2Cl2. The magnetic behavior of this compound is well reproduced by a uniform spin-1/2 chain model with the nearest-neighbor exchange of about 133 K. Due to the peculiar crystal structure, spin chains run in the direction almost perpendicular to the structural chains. We find an exotic regime of frustrated interchain couplings owing to two inequivalent exchanges of 10 K each. Peculiar superexchange paths grant an opportunity to investigate bond-randomness effects under partial Cl-Br substitution.Comment: Extended version: 9 pages, 7 figures, 4 table

    Antibodies raised against a Sunn bug (Eurygaster integriceps Put.) recombinant protease, rGHP3p2, can inhibit gluten‐hydrolyzing activity

    Get PDF
    Sunn pest or Sunn bug, Eurygaster integriceps Put., salivary gland proteases are responsible for the deterioration of wheat flour quality during dough mixing, resulting from gluten hydrolysis. These proteases are highly heterogeneous and show low sensitivity to most types of proteinaceous inhibitors, meaning that such inhibitors cannot be used to prevent gluten damage. The present study describes the generation of a specific peptide antibody, raised against the active center of the recombinant gluten-hydrolyzing protease (GHP3). The recombinant protein, encoding two repeats of the GHP3 sequence element involved in forming the S4 pocket and binding of substrate at position P4, was designed and expressed in Escherichia coli. The antibodies raised to this recombinant protein showed inhibitory activity against the GHP3 protease. The results indicate that it is possible to design specific antibodies to inhibit wheat-bug gluten-hydrolyzing proteases

    Characterisation of proteolytic enzymes of Eurygaster integriceps Put. (Sunn bug), a major pest of cereals

    Get PDF
    Eurygaster integriceps (Sunn pest or Sunn bug) is one of the most significant pests of wheat and is responsible for substantial losses in yield and quality of wheat grain in Europe and Asia. Sunn pest salivary gland-derived proteases and other hydrolases damage grain proteins and starch. Characterisation of protease activities from both Sunn pest salivary glands and Sunn pest-damaged wheat grains revealed a broad range of activities in terms of substrate specificity and diversity of isoelectric point. Neutral and alkaline proteases present in Sunn pest-damaged grains were shown to be capable of hydrolyzing gluten proteins, whilst some proteases were also shown to be active against gelatin. The neutral serine proteases present play the dominant role in degradation of gluten quality. The sensitivity of some proteases to proteinaceous and non-proteinaceous serine proteinase inhibitors was shown, including that of a recombinantly expressed protease. It was found that proteases isolated from Sunn pest salivary glands could be activated by trypsin indicating that they are present as zymogens in vivo. Analysis of individual Sunn pest-damaged grains showed great diversity in the proteases present. This work highlights the challenges of developing proteinase inhibitors to manage Sunn pest damage

    Magnetism of coupled spin tetrahedra in ilinskite-type KCu5_{5}O2_2(SeO3_3)2_2Cl3_3

    Get PDF
    Synthesis, thermodynamic properties, and microscopic magnetic model of ilinskite-type KCu5_{5}O2_2(SeO3_3)2_2Cl3_3 built by corner-sharing Cu4_4 tetrahedra are reported, and relevant magnetostructural correlations are discussed. Quasi-one-dimensional magnetic behavior with the short-range order around 50\,K and the absence of long-range order down to at least 2\,K is observed experimentally and explained in terms of weakly coupled spin ladders (tubes) with a complex topology formed upon fragmentation of the tetrahedral network. This fragmentation is rooted in the non-trivial effect of the SeO3_3 groups that render the Cu--O--Cu superexchange strongly ferromagnetic.Comment: 9 pages, 7 figure

    Immunological and genetic features of pathogenetic association between psoriasis and colonic dysbiosis

    Get PDF
    Psoriasis is a multifactorial systemic immune-associated disease. It is assumed that colonic dysbiosis may contribute to its development. In this review we provide the data on colonic dysbiosis in induction and progression of psoriatic inflammation assessing a role for bacterial species: Akkermansia muciniphila, Faecalibacterium prausnitzii and Escherichia coli. On one hand, these bacterial species indicate at state of dysbiotic bacterial communities, whereas on the other hand, they are functionally associated with triggering a chain of events inducing impaired intestinal barrier transforming into chronic inflammation in the colonic mucosa and systemic inflammation. Such a scenario leads to the altered systemic reactivity of innate and adaptive immune cells, impaired function of regulatory immune cells resulting in expansion of the autoreactive skin T-cells and induction of psoriatic inflammation due to molecular mimicry between persistent Streptococcus pyogenes and cutaneous antigens. The psoriatic process is envisioned as a comorbidity with inflammatory bowel diseases. Since dysbiotic changes in psoriasis and inflammatory bowel diseases (e.g. Crohn's disease) display similar features, these diseases might potentially proceed via a similar pathogenetic chain resulting from dysbiotic changes in intestinal microbiota towards impaired intestinal barrier, chronic systemic inflammation and altered anti-inflammatory immune arm. Therefore, the data on pathogenetic pathways of the diseases comorbid with psoriasis are able to uncover yet-unknown pathogenetic components for the latter. Psoriasis as a genetically-determined disease is currently believed to be associated with single nucleotide polymorphisms (SNP) in more than four hundred genes. A role for diverse SNPs in candidate genes involved in psoriasis pathogenetic chain in antigen processing and presentation, migration of immune cells, pro-inflammatory cytokine ligation and production is discussed. Crohn's disease is associated with single nucleotide polymorphisms of the genes encoding intestinal barrier proteins potentially underlying its functional deficiency. In connection with comorbidity and similarity between microbiota-associated pathogenetic psoriasis chain and inflammatory bowel diseases, it is possible to assume that such SNPs accounting for genetic defects in the intestinal barrier are manifested as dysbiotic changes in colonic bacterial community and contribute to progression not only of inflammatory bowel diseases, but psoriasis as well
    corecore