102 research outputs found

    A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome

    No full text
    An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide

    Euclid preparation: XXVIII. Modelling of the weak lensing angular power spectrum

    No full text
    International audienceThis work considers which higher-order effects in modelling the cosmic shear angular power spectra must be taken into account for Euclid. We identify which terms are of concern, and quantify their individual and cumulative impact on cosmological parameter inference from Euclid. We compute the values of these higher-order effects using analytic expressions, and calculate the impact on cosmological parameter estimation using the Fisher matrix formalism. We review 24 effects and find the following potentially need to be accounted for: the reduced shear approximation, magnification bias, source-lens clustering, source obscuration, local Universe effects, and the flat Universe assumption. Upon computing these explicitly, and calculating their cosmological parameter biases, using a maximum multipole of ℓ=5000\ell=5000, we find that the magnification bias, source-lens clustering, source obscuration, and local Universe terms individually produce significant ( >0.25σ\,>0.25\sigma) cosmological biases in one or more parameters, and accordingly must be accounted for. In total, over all effects, we find biases in Ωm\Omega_{\rm m}, Ωb\Omega_{\rm b}, hh, and σ8\sigma_{8} of 0.73σ0.73\sigma, 0.28σ0.28\sigma, 0.25σ0.25\sigma, and −0.79σ-0.79\sigma, respectively, for flat Λ\LambdaCDM. For the w0waw_0w_aCDM case, we find biases in Ωm\Omega_{\rm m}, Ωb\Omega_{\rm b}, hh, nsn_{\rm s}, σ8\sigma_{8}, and waw_a of 1.49σ1.49\sigma, 0.35σ0.35\sigma, −1.36σ-1.36\sigma, 1.31σ1.31\sigma, −0.84σ-0.84\sigma, and −0.35σ-0.35\sigma, respectively; which are increased relative to the Λ\LambdaCDM due to additional degeneracies as a function of redshift and scale

    Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

    No full text
    International audienceCosmological surveys planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, in order not to introduce biases in the estimation of cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as it has been previously shown in literature studies. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by arXiv:1902.07226, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey, in order to assess their impact and quantify the bias on the measurement of cosmological parameters that neglecting such an effect would cause. We perform this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as expected to be obtained from the Euclid survey. We then use a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from such simulated observations. We find that neglecting the linear RSD leads to significant biases both when using galaxy correlations alone and when these are combined with cosmic shear, in the so-called 3×\times2pt approach. Such biases can be as large as 5 σ5\,\sigma-equivalent when assuming an underlying Λ\LambdaCDM cosmology. When extending the cosmological model to include the equation-of-state parameters of dark energy, we find that the extension parameters can be shifted by more than 1 σ1\,\sigma

    Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

    No full text
    International audienceCosmological surveys planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Universe. This will allow us to test the concordance cosmological model and its extensions. However, precision pushes us to high levels of accuracy in the theoretical modelling of the LSS observables, in order not to introduce biases in the estimation of cosmological parameters. In particular, effects such as redshift-space distortions (RSD) can become relevant in the computation of harmonic-space power spectra even for the clustering of the photometrically selected galaxies, as it has been previously shown in literature studies. In this work, we investigate the contribution of linear RSD, as formulated in the Limber approximation by arXiv:1902.07226, in forecast cosmological analyses with the photometric galaxy sample of the Euclid survey, in order to assess their impact and quantify the bias on the measurement of cosmological parameters that neglecting such an effect would cause. We perform this task by producing mock power spectra for photometric galaxy clustering and weak lensing, as expected to be obtained from the Euclid survey. We then use a Markov chain Monte Carlo approach to obtain the posterior distributions of cosmological parameters from such simulated observations. We find that neglecting the linear RSD leads to significant biases both when using galaxy correlations alone and when these are combined with cosmic shear, in the so-called 3×\times2pt approach. Such biases can be as large as 5 σ5\,\sigma-equivalent when assuming an underlying Λ\LambdaCDM cosmology. When extending the cosmological model to include the equation-of-state parameters of dark energy, we find that the extension parameters can be shifted by more than 1 σ1\,\sigma
    • 

    corecore