7 research outputs found

    Therapeutic Induction of Energy Metabolism Reduces Neural Tissue Damage and Increases Microglia Activation in Severe Spinal Cord Injury

    Get PDF
    : Neural tissue has high metabolic requirements. Following spinal cord injury (SCI), the damaged, tissue suffers from a severe metabolic impairment, which aggravates axonal degeneration and, neuronal loss. Impaired cellular energetic, tricarboxylic acid (TCA) cycle and oxidative, phosphorylation metabolism in neuronal cells has been demonstrated to be a major cause of neural tissue death and regeneration failure following SCI. Therefore, rewiring the spinal cord cell metabolism may be an innovative therapeutic strategy for the treatment of SCI. In this study, we evaluated the therapeutic effect of the recovery of oxidative metabolism in a mouse model of severe contusive SCI. Oral administration of TCA cycle intermediates, co-factors, essential amino acids, and branched-chain amino acids was started 3 days post-injury and continued until the end of the experimental procedures. Metabolomic, immunohistological, and biochemical analyses were performed on the injured spinal cord sections. Administration of metabolic precursors enhanced spinal cord oxidative metabolism. In line with this metabolic shift, we observed the activation of the mTORC1 anabolic pathway, the increase in mitochondrial mass, and ROS defense which effectively prevented the injury-induced neural cell apoptosis in treated animals. Consistently, we found more choline acetyltransferase (ChAT)-expressing motor neurons and increased neurofilament positive corticospinal axons in the spinal cord parenchyma of the treated mice. Interestingly, oral administration of the metabolic precursors increased the number of activated microglia expressing the CD206 marker suggestive of a, pro-resolutive, M2-like phenotype. These molecular and histological modifications observed in treated animals ultimately led to a significant, although partial, improvement of the motor functions. Our data demonstrate that rewiring the cellular metabolism can represent an effective strategy to treat SCI

    Meninges: A Widespread Niche of Neural Progenitors for the Brain

    No full text
    Emerging evidence highlights the several roles that meninges play in relevant brain functions as they are a protective membrane for the brain, produce and release several trophic factors important for neural cell migration and survival, control cerebrospinal fluid dynamics, and embrace numerous immune interactions affecting neural parenchymal functions. Furthermore, different groups have identified subsets of neural progenitors residing in the meninges during development and in the adulthood in different mammalian species, including humans. Interestingly, these immature neural cells are able to migrate from the meninges to the neural parenchyma and differentiate into functional cortical neurons or oligodendrocytes. Immature neural cells residing in the meninges promptly react to brain disease. Injury-induced expansion and migration of meningeal neural progenitors have been observed following experimental demyelination, traumatic spinal cord and brain injury, amygdala lesion, stroke, and progressive ataxia. In this review, we summarize data on the function of meninges as stem cell niche and on the presence of immature neural cells in the meninges, and discuss their roles in brain health and disease. Furthermore, we consider the potential exploitation of meningeal neural progenitors for the regenerative medicine to treat neurological disorders

    Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling

    No full text
    Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced \u3b23-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments

    Nitric Oxide in Selective Cerebral Perfusion Could Enhance Neuroprotection During Aortic Arch Surgery

    Get PDF
    Background: Hypothermic circulatory arrest (HCA) in aortic arch surgery has a significant risk of neurological injury despite the newest protective techniques and strategies. Nitric oxide (NO) could exert a protective role, reduce infarct area and increase cerebral perfusion. This study aims to investigate the possible neuroprotective effects of NO administered in the oxygenator of selective antegrade cerebral perfusion (SCP) during HCA. Methods: Thirty male SD adult rats (450-550 g) underwent cardiopulmonary bypass (CPB), cooling to 22°C body core temperature followed by 30 min of HCA. Rats were randomized to receive SCP or SCP added with NO (20 ppm) administered through the oxygenator (SCP-NO). All animals underwent CPB-assisted rewarming to a target temperature of 35°C in 60 min. At the end of the experiment, rats were sacrificed, and brain collected. Immunofluorescence analysis was performed in blind conditions. Results: Neuroinflammation assessed by allograft inflammatory factor 1 or ionized calcium-binding adapter molecule 1 expression, a microglia activation marker was lower in SCP-NO compared to SCP (4.11 ± 0.59 vs. 6.02 ± 0.18%; p < 0.05). Oxidative stress measured by 8oxodG, was reduced in SCP-NO (0.37 ± 0.01 vs. 1.03 ± 0.16%; p < 0.05). Brain hypoxic area extent, analyzed by thiols oxidation was attenuated in SCP-NO (1.85 ± 0.10 vs. 2.74 ± 0.19%; p < 0.05). Furthermore, the apoptotic marker caspases 3 was significantly reduced in SCP-NO (10.64 ± 0.37 vs. 12.61 ± 0.88%; p < 0.05). Conclusions: Nitric oxide administration in the oxygenator during SCP and HCA improves neuroprotection by decreasing neuroinflammation, optimizing oxygen delivery by reducing oxidative stress and hypoxic areas, finally decreasing apoptosis

    Slow versus fast rewarming after hypothermic circulatory arrest: effects on neuroinflammation and cerebral oedema

    No full text
    Among the factors that could determine neurological outcome after hypothermic circulatory arrest (HCA) rewarming is rarely considered. The optimal rewarming rate is still unknown. The goal of this study was to investigate the effects of 2 different protocols for rewarming after HCA on neurological outcome in an experimental animal model

    Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity

    Get PDF
    Brain organoids are in vitro three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10–20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs). Here, we developed, for the first time, a highly standardized, reproducible, and fast (5 weeks) murine brain organoid model starting from embryonic neural stem cells. We obtained brain organoids, which progressively differentiated and self-organized into 3D networks of functional neurons with dorsal forebrain phenotype. Furthermore, by adding the morphogen WNT3a, we generated brain organoids with specific hippocampal region identity. Overall, our results showed the establishment of a fast, robust and reproducible murine 3D in vitro brain model that may represent a useful tool for high-throughput drug screening and disease modeling.publishedVersionPeer reviewe
    corecore