42 research outputs found

    Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein.

    Get PDF
    The folliculin/Fnip complex has been demonstrated to play a crucial role in the mechanisms underlying Birt-Hogg-Dubé (BHD) syndrome, a rare inherited cancer syndrome. Lst4 has been previously proposed to be the Fnip1/2 orthologue in yeast and therefore a member of the DENN family. In order to confirm this, we solved the crystal structure of the N-terminal region of Lst4 from Kluyveromyces lactis and show it contains a longin domain, the first domain of the full DENN module. Furthermore, we demonstrate that Lst4 through its DENN domain interacts with Lst7, the yeast folliculin orthologue. Like its human counterpart, the Lst7/Lst4 complex relocates to the vacuolar membrane in response to nutrient starvation, most notably in carbon starvation. Finally, we express and purify the recombinant Lst7/Lst4 complex and show that it exists as a 1 : 1 heterodimer in solution. This work confirms the membership of Lst4 and the Fnip proteins in the DENN family, and provides a basis for using the Lst7/Lst4 complex to understand the molecular function of folliculin and its role in the pathogenesis of BHD syndrome.AP, BKB and RKN were supported by the Myrovlytis Trust. DBA was supported by a NHMRC CJ Martin Fellowship (APP1072476). LHW was supported by Medical Research Council (MRC) studentship, MR/J006580/1 and TPL by University College London. SD was supported by Fondation de France, La Ligue National contre le Cancer (Comité de Paris / Ile-de-France and Comité de l’Oise); TLB and NZ thank the University of Cambridge and The Wellcome Trust for facilities and support.This is the final version of the article. It was first available from Royal Society Publishing via http://dx.doi.org/10.1098/rsob.15017

    Studying the mrna-bonding centre of the ribosome on the stages of initiation and elongation of translation

    No full text
    The object of investigation: the prokariotic ribosome E. coli. The work is aimed at studying the location of the matrix RNA on the ribosome in the different initiation comlexes and in the elongation ribosome using the method of the affine modification. The modification of ribosomes by the photoaffine analogs of the mRNA has been performed. Stitches mRNA-16s RNA have been analyzed by the RNA-ase H hydrolisis, the mRNA-proteins using the immunochemical method. The new method intended for the analysis of stitches mRNA-16s RNA has been developed. Specific areas 16s RNA and ribosome proteins, which are drawn nearer with mRNA on the different stages of translation, have been identified. The results have served as the base for the model of space organisation 30s subparticle for reconsiderationAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Le complexe SEA (Structure et Fonction d'un Nouveau RĂ©gulateur de la Voie TORC1)

    No full text
    La voie TORC1 joue un rôle majeur dans le contrôle de la croissance cellulaire et de la réponse à divers stress. Le dérèglement de cette voie est constaté dans de nombreux cancers et autres maladies. Au cours de ma thèse, j ai montré que le complexe SEA émerge comme un régulateur central des différentes activités de TORC1. Durant la carence azotée, les délétions des gènes du complexe SEA dans l organisme modèle S.cerevisiae mènent à la délocalisation de la kinase Tor1 vers le cytoplasme, à des défauts d autophagie et à la fragmentation de la vacuole. L inactivation de TORC1 par le traitement avec la rapamycine ou pendant la carence azotée change le niveau d expression des membres du complexe SEA. De plus, le complexe SEA interagit avec la mitochondrie, joue un rôle dans la réponse au stress oxydatif et peut servir de lien moléculaire entre les fonctions mitochondriales et la voie TORC1. Enfin, j ai pu observer que le complexe SEA est impliqué dans les mécanismes de résistance à une drogue souvent utilisée en chimiothérapie, la doxorubicine. Je présente dans mes travaux la première carte d interconnectivité des protéines composant le complexe SEA. Nos données suggèrent que le complexe SEA émerge comme une plateforme qui peut coordonner les activités structurales et enzymatiques nécessaires pour le fonctionnement efficace de la voie de signalisation TORC1.The TORC1 pathway plays a major role in controlling cell growth and response to various stresses. Deregulation of this pathway is found in many cancers and other diseases. In my thesis, I have shown that the SEA complex emerges as a central regulator of the various activities of TORC1. During the nitrogen deficiency, deletions of SEA complex genes in the model organism S.cerevisiae lead to the relocation of Tor1 kinase to the cytoplasm, to defects in autophagy and the fragmentation of the vacuole. Inactivation of TORC1 by treatment with rapamycin or nitrogen starvation changes the level of expression of SEA complex members. Moreover, the SEA complex interacts with mitochondrion, plays a role in oxidative stress response and can serve as a molecular link between mitochondrial functions and TORC1 pathway. Finally, I observed that the SEA complex is involved in the mechanisms of resistance to a drug often used in chemotherapy, the doxorubicin. I present in my work the first interconnectivity map protein of the SEA complex component. Our data suggest that the SEA complex emerges as a platform that can coordinate structural and enzymatic activities necessary for the efficient function of the TORC1 signalling pathway.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    SEA and GATOR 10 Years Later

    No full text
    The SEA complex was described for the first time in yeast Saccharomyces cerevisiae ten years ago, and its human homologue GATOR complex two years later. During the past decade, many advances on the SEA/GATOR biology in different organisms have been made that allowed its role as an essential upstream regulator of the mTORC1 pathway to be defined. In this review, we describe these advances in relation to the identification of multiple functions of the SEA/GATOR complex in nutrient response and beyond and highlight the consequence of GATOR mutations in cancer and neurodegenerative diseases

    mTORC1 pathway in DNA damage response

    No full text
    International audienc

    Modulation of mTORC1 Signaling Pathway by HIV-1

    No full text
    International audienceMammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to dierent stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradicatio

    Cleave to Leave: Structural Insights into the Dynamic Organization of the Nuclear Pore Complex

    Get PDF
    A detailed understanding of the fine structure of the nuclear pore complex has remained elusive. Now, studies on a small protein domain have shed light on the dynamic organization of this massive assembly.

    Nucleolus: A Central Hub for Nuclear Functions

    No full text
    International audienceThe nucleus contains distinct nuclear bodies (NBs); nucleolus is the largest and the most studied NB, but its role in the functioning of the nucleus is far from being fully understood. The nucleolus is not surrounded by a membrane, yet it contains DNA, RNA and a set of proteins that can either be retained in the nucleolus or rapidly shuttle between the nucleoplasm, the nucleolus and the cytoplasm in response to various stimuli. The emerging evidence points to the central function of the nucleolus in organizing many nuclear functions besides RNA polymerase I transcription and ribosome biogenesis. Here we discuss the functions of the nucleolus related to the shuttling of proteins and nucleic acids between nucleolus and nucleoplasm. The functional processes affected by shuttling of nucleolar components include 3D organization of the genome, stress response, DNA repair and recombination, transcription regulation, telomere maintenance and other essential cellular functions
    corecore