7,329 research outputs found
Monoidal Hom-Hopf algebras
Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras) have been
investigated in the literature recently. We study Hom-structures from the point
of view of monoidal categories; in particular, we introduce a symmetric
monoidal category such that Hom-algebras coincide with algebras in this
monoidal category, and similar properties for coalgebras, Hopf algebras and Lie
algebras.Comment: 25 pages; extended version: compared to the version that appeared in
Comm. Algebra, the Section Preliminary Results and Remarks 5.1 and 6.1 have
been adde
Effective Edwards-Wilkinson equation for single-file diffusion
In this work, we present an effective discrete Edwards-Wilkinson equation
aimed to describe the single-file diffusion process. The key physical
properties of the system are captured defining an effective elasticity, which
is proportional to the single particle diffusion coefficient and to the inverse
squared mean separation between particles. The effective equation gives a
description of single-file diffusion using the global roughness of the system
of particles, which presents three characteristic regimes, namely normal
diffusion, subdiffusion and saturation, separated by two crossover times. We
show how these regimes scale with the parameters of the original system.
Additional repulsive interaction terms are also considered and we analyze how
the crossover times depend on the intensity of the additional terms. Finally,
we show that the roughness distribution can be well characterized by the
Edwards-Wilkinson universal form for the different single-file diffusion
processes studied here.Comment: 9 pages, 9 figure
On U_q(SU(2))-symmetric Driven Diffusion
We study analytically a model where particles with a hard-core repulsion
diffuse on a finite one-dimensional lattice with space-dependent, asymmetric
hopping rates. The system dynamics are given by the
\mbox{U[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic
Heisenberg antiferromagnet. Exploiting this symmetry we derive exact
expressions for various correlation functions. We discuss the density profile
and the two-point function and compute the correlation length as well
as the correlation time . The dynamics of the density and the
correlations are shown to be governed by the energy gaps of a one-particle
system. For large systems and depend only on the asymmetry. For
small asymmetry one finds indicating a dynamical exponent
as for symmetric diffusion.Comment: 10 pages, LATE
Classification of graph C*-algebras with no more than four primitive ideals
We describe the status quo of the classification problem of graph C*-algebras
with four primitive ideals or less
Discovery of a wandering radio jet base after a large X-ray flare in the blazar Markarian 421
We investigate the location of the radio jet bases ("radio cores") of blazars
in radio images, and their stationarity by means of dense very long baseline
interferometry (VLBI) observations. In order to measure the position of a radio
core, we conducted 12 epoch astrometric observation of the blazar Markarian 421
with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a
large X-ray flare, which occurred in the middle of 2011 September. For the
first time, we find that the radio core is not stationary but rather changes
its location toward 0.5 mas downstream. This angular scale corresponds to the
de-projected length of a scale of Schwarzschild radii (Rs) at the
distance of Markarian~421. This radio-core wandering may be a new type of
manifestation associated with the phenomena of large X-ray flares.Comment: 6 pages, 4 figures, 1 table, has been published in ApJ Letter
Hydrodynamic synchronisation of non-linear oscillators at low Reynolds number
We introduce a generic model of weakly non-linear self-sustained oscillator
as a simplified tool to study synchronisation in a fluid at low Reynolds
number. By averaging over the fast degrees of freedom, we examine the effect of
hydrodynamic interactions on the slow dynamics of two oscillators and show that
they can lead to synchronisation. Furthermore, we find that synchronisation is
strongly enhanced when the oscillators are non-isochronous, which on the limit
cycle means the oscillations have an amplitude-dependent frequency.
Non-isochronity is determined by a nonlinear coupling being non-zero.
We find that its () sign determines if they synchronise in- or
anti-phase. We then study an infinite array of oscillators in the long
wavelength limit, in presence of noise. For , hydrodynamic
interactions can lead to a homogeneous synchronised state. Numerical
simulations for a finite number of oscillators confirm this and, when , show the propagation of waves, reminiscent of metachronal coordination.Comment: 4 pages, 2 figure
Turbulent Drag Reduction by Flexible and Rodlike Polymers: Crossover Effects at Small Concentrations
Drag reduction by polymers is bounded between two universal asymptotes, the
von-K\'arm\'an log-law of the law and the Maximum Drag Reduction (MDR)
asymptote. It is theoretically understood why the MDR asymptote is universal,
independent of whether the polymers are flexible or rodlike. The cross-over
behavior from the Newtonian von-K\'arm\'an log-law to the MDR is however not
universal, showing different characteristics for flexible and rodlike polymers.
In this paper we provide a theory for this cross-over phenomenology.Comment: 5 pages, 4 figures, submitted to Physical Review
Slow plasmon modes in polymeric salt solutions
The dynamics of polymeric salt solutions are presented. The salt consists of
chains and , which are chemically different and interact with a
Flory-interaction parameter , the chain ends carry a positive
charge whereas the chain ends are modified by negative charges. The
static structure factor shows a peak corresponding to a micro phase separation.
At low momentum transfer, the interdiffusion mode is driven by electrostatics
and is of the plasmon-type, but with an unusually low frequency, easily
accessible by experiments. This is due to the polymer connectivity that
introduces high friction and amplifies the charge scattering thus allowing for
low charge densities. The interdiffusion mode shows a minimum (critical slowing
down) at finite when the interaction parameter increases we find then a low
frequency quasi-plateau.Comment: accepted in Europhys. Let
Conformational transformations induced by the charge-curvature interaction at finite temperature
The role of thermal fluctuations on the conformational dynamics of a single
closed filament is studied. It is shown that, due to the interaction between
charges and bending degrees of freedom, initially circular aggregates may
undergo transformation to polygonal shape. The transition occurs both in the
case of hardening and softening charge-bending interaction. In the former case
the charge and curvature are smoothly distributed along the chain while in the
latter spontaneous kink formation is initiated. The transition to a
non-circular conformation is analogous to the phase transition of the second
kind.Comment: 23 pages (Latex), 10 figures (Postscript), 2 biblio file (bib-file
and bbl-file
- …