334 research outputs found

    Quantum feedback control of a solid-state qubit

    Full text link
    We have studied theoretically the basic operation of a quantum feedback loop designed to maintain a desired phase of quantum coherent oscillations in a single solid-state qubit. The degree of oscillations synchronization with external harmonic signal is calculated as a function of feedback strength, taking into account available bandwidth and coupling to environment. The feedback can efficiently suppress the dephasing of oscillations if the qubit coupling to the detector is stronger than coupling to environment.Comment: Extended version of cond-mat/0107280 (5 pages, 5 figures); to be published in PRB (RC

    Sensitivity optimization in quantum parameter estimation

    Get PDF
    We present a general framework for sensitivity optimization in quantum parameter estimation schemes based on continuous (indirect) observation of a dynamical system. As an illustrative example, we analyze the canonical scenario of monitoring the position of a free mass or harmonic oscillator to detect weak classical forces. We show that our framework allows the consideration of sensitivity scheduling as well as estimation strategies for non-stationary signals, leading us to propose corresponding generalizations of the Standard Quantum Limit for force detection.Comment: 15 pages, RevTe

    Mirror quiescence and high-sensitivity position measurements with feedback

    Get PDF
    We present a detailed study of how phase-sensitive feedback schemes can be used to improve the performance of optomechanical devices. Considering the case of a cavity mode coupled to an oscillating mirror by the radiation pressure, we show how feedback can be used to reduce the position noise spectrum of the mirror, cool it to its quantum ground state, or achieve position squeezing. Then, we show that even though feedback is not able to improve the sensitivity of stationary position spectral measurements, it is possible to design a nonstationary strategy able to increase this sensitivity.Comment: 25 pages, 11 figure

    Feedback cooling of a nanomechanical resonator

    Get PDF
    Cooled, low-loss nanomechanical resonators offer the prospect of directly observing the quantum dynamics of mesoscopic systems. However, the present state of the art requires cooling down to the milliKelvin regime in order to observe quantum effects. Here we present an active feedback strategy based on continuous observation of the resonator position for the purpose of obtaining these low temperatures. In addition, we apply this to an experimentally realizable configuration, where the position monitoring is carried out by a single-electron transistor. Our estimates indicate that with current technology this technique is likely to bring the required low temperatures within reach.Comment: 10 pages, RevTex4, 4 color eps figure

    Evolution of a qubit under the influence of a succession of unsharp measurements

    Full text link
    We investigate the evolution of a single qubit subject to a continuous unitary dynamics and an additional interrupting influence which occurs periodically. One may imagine a dynamically evolving closed quantum system which becomes open at certain times. The interrupting influence is represented by an operation, which is assumed to equivalently describe a non-selective unsharp measurement. It may be decomposed into a positive operator, which in case of a measurement represents the pure measurement part, followed by an unitary back-action operator. Equations of motion for the state evolution are derived in the form of difference equations. It is shown that the 'free' Hamiltonian is completed by an averaged Hamiltonian, which goes back to the back-action. The positive operator specifies a decoherence rate and results in a decoherence term. The continuum limit to a master equation is performed. The selective evolution is discussed and correcting higher order terms are worked out in an Appendix.Comment: 19 pages, no figure

    One-and-a-half quantum de Finetti theorems

    Full text link
    We prove a new kind of quantum de Finetti theorem for representations of the unitary group U(d). Consider a pure state that lies in the irreducible representation U_{mu+nu} for Young diagrams mu and nu. U_{mu+nu} is contained in the tensor product of U_mu and U_nu; let xi be the state obtained by tracing out U_nu. We show that xi is close to a convex combination of states Uv, where U is in U(d) and v is the highest weight vector in U_mu. When U_{mu+nu} is the symmetric representation, this yields the conventional quantum de Finetti theorem for symmetric states, and our method of proof gives near-optimal bounds for the approximation of xi by a convex combination of product states. For the class of symmetric Werner states, we give a second de Finetti-style theorem (our 'half' theorem); the de Finetti-approximation in this case takes a particularly simple form, involving only product states with a fixed spectrum. Our proof uses purely group theoretic methods, and makes a link with the shifted Schur functions. It also provides some useful examples, and gives some insight into the structure of the set of convex combinations of product states.Comment: 14 pages, 3 figures, v4: minor additions (including figures), published versio

    Continuous Quantum Measurement and the Quantum to Classical Transition

    Get PDF
    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes which affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit. First, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.Comment: 12 pages, 4 figures, Revtex

    Feedback-control of quantum systems using continuous state-estimation

    Full text link
    We present a formulation of feedback in quantum systems in which the best estimates of the dynamical variables are obtained continuously from the measurement record, and fed back to control the system. We apply this method to the problem of cooling and confining a single quantum degree of freedom, and compare it to current schemes in which the measurement signal is fed back directly in the manner usually considered in existing treatments of quantum feedback. Direct feedback may be combined with feedback by estimation, and the resulting combination, performed on a linear system, is closely analogous to classical LQG control theory with residual feedback.Comment: 12 pages, multicol revtex, revised and extende

    Selective quantum evolution of a qubit state due to continuous measurement

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector. The information provided by the detector is taken into account to describe the evolution during a particular realization of measurement process. We discuss the Bayesian formalism for such ``selective'' evolution of an individual qubit and apply it to several solid-state setups. In particular, we show how to suppress the qubit decoherence using continuous measurement and the feedback loop.Comment: 15 pages (including 9 figures

    Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt
    corecore