15 research outputs found
Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy
Purpose: Conjunctival melanoma (CM) is a rare but lethal form of cancer. Similar to cutaneous melanoma, CM frequently carries activating mutations in BRAF and NRAS. We studied whether CM as well as conjunctival benign and premalignant melanocytic lesions express targets in the mitogen-activated protein kinase (MAPK) and AKT pathways, and whether specific inhibitors can suppress CM growth in vitro. Methods: 131 conjunctival lesions obtained from 129 patients were collected. The presence of BRAF V600E mutation and expression of phosphorylated (p)-ERK and p-AKT were assessed by immunohistochemistry. We studied cell proliferation, phosphorylation, cell cycling and apoptosis in three CM cell lines using two BRAF inhibitors (Vemurafenib and Dabrafenib), a MEK inhibitor (MEK162) and an AKT inhibitor (MK2206). Results: The BRAF V600E mutation was present in 19% of nevi and 26% of melanomas, but not in primary acquired melanosis (PAM). Nuclear and cytoplasmic p-ERK and p-AKT were expressed in all conjunctival lesions. Both BRAF inhibitors suppressed growth of both BRAF mutant CM cell lines, but only one induced cell death. MEK162 and MK2206 inhibited proliferation of CM cells in a dose-dependent manner, and the combination of these two drugs led to synergistic growth inhibition and cell death in all CM cell lines. Conclusion: ERK and AKT are constitutively activated in conjunctival nevi, PAM and melanoma. While BRAF inhibitors prohibited cell growth, they were not always cytotoxic. Combining MEK and AKT inhibitors led to more growth inhibition and cell death in CM cells. The combination may benefit patients suffering from metastatic conjunctival melanoma
Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment
Experimental cancer immunology and therap
Aqueous Humor Biomarkers Identify Three Prognostic Groups in Uveal Melanoma
Purpose: To investigate whether we can identify different patterns of inflammation in the aqueous humor of a uveal melanoma (UM)-containing eye, and whether these are related to prognosis. Meth
Multicenter external validation of the liverpool uveal melanoma prognosticator online: An OOG collaborative study
Uveal melanoma (UM) is fatal in ~50% of patients as a result of disseminated disease. This study aims to externally validate the Liverpool Uveal Melanoma Prognosticator Online V3 (LUMPO3) to determine its reliability in predicting survival after treatment for choroidal melanoma when utilizing external data from other ocular oncology centers. Anonymized data of 1836 UM patients from seven international ocular oncology centers were analyzed with LUMPO3 to predict the 10-year survival for each patient in each external dataset. The analysts were masked to the patient outcomes. Model predictions were sent to an independent statistician to evaluate LUMPO3’s performance using discrimination and calibration methods. LUMPO3’s ability to discriminate between UM patients who died of metastatic UM and those who were still alive was fair-to-good, with C-statistics ranging from 0.64 to 0.85 at year 1. The pooled estimate for all external centers was 0.72 (95% confidence interval: 0.68 to 0.75). Agreement between observed and predicted survival probabilities was generally good given differences in case mix and survival rates between different centers. Despite the differences between the international cohorts of patients with primary UM, LUMPO3 is a valuable tool for predicting all-cause mortality in this disease when using data from external centers
Differential Expression of DNA Repair Genes in Prognostically-Favorable versus Unfavorable Uveal Melanoma
Expression of DNA repair genes was studied in uveal melanoma (UM) in order to identify genes that may play a role in metastases formation. We searched for genes that are differentially expressed between tumors with a favorable and unfavorable prognosis. Gene-expression profiling was performed on 64 primary UM from the Leiden University Medical Center (LUMC), Leiden, The Netherlands. The expression of 121 genes encoding proteins involved in DNA repair pathways was analyzed: a total of 44 genes differed between disomy 3 and monosomy 3 tumors. Results were validated in a cohort from Genoa and Paris and the The Cancer Genome Atlas (TCGA) cohort. Expression of the PRKDC, WDR48, XPC, and BAP1 genes was significantly associated with clinical outcome after validation. PRKDC was highly expressed in metastasizing UM (p < 0.001), whereas WDR48, XPC, and BAP1 were lowly expressed (p < 0.001, p = 0.006, p = 0.003, respectively). Low expression of WDR48 and XPC was related to a large tumor diameter (p = 0.01 and p = 0.004, respectively), and a mixed/epithelioid cell type (p = 0.007 and p = 0.03, respectively). We conclude that the expression of WDR48, XPC, and BAP1 is significantly lower in UM with an unfavorable prognosis, while these tumors have a significantly higher expression of PRKDC. Pharmacological inhibition of DNA-PKcs resulted in decreased survival of UM cells. PRKDC may be involved in proliferation, invasion and metastasis of UM cells. Unraveling the role of DNA repair genes may enhance our understanding of UM biology and result in the identification of new therapeutic targets
Differential expression of DNA repair genes in prognostically-favorable versus unfavorable uveal melanoma
Expression of DNA repair genes was studied in uveal melanoma (UM) in order to identify genes that may play a role in metastases formation. We searched for genes that are differentially expressed between tumors with a favorable and unfavorable prognosis. Gene-expression profiling was performed on 64 primary UM from the Leiden University Medical Center (LUMC), Leiden, The Netherlands. The expression of 121 genes encoding proteins involved in DNA repair pathways was analyzed: a total of 44 genes differed between disomy 3 and monosomy 3 tumors. Results were validated in a cohort from Genoa and Paris and the The Cancer Genome Atlas (TCGA) cohort. Expression of the PRKDC, WDR48, XPC, and BAP1 genes was significantly associated with clinical outcome after validation. PRKDC was highly expressed in metastasizing UM (p < 0.001), whereas WDR48, XPC, and BAP1 were lowly expressed (p < 0.001, p = 0.006, p = 0.003, respectively). Low expression of WDR48 and XPC was related to a large tumor diameter (p = 0.01 and p = 0.004, respectively), and a mixed/epithelioid cell type (p = 0.007 and p = 0.03, respectively). We conclude that the expression of WDR48, XPC, and BAP1 is significantly lower in UM with an unfavorable prognosis, while these tumors have a significantly higher expression of PRKDC. Pharmacological inhibition of DNA-PKcs resulted in decreased survival of UM cells. PRKDC may be involved in proliferation, invasion and metastasis of UM cells. Unraveling the role of DNA repair genes may enhance our understanding of UM biology and result in the identification of new therapeutic targets
Sequence analysis of the GNAQ Q209P (A>C), GNAQ Q209L (A>T) and GNA11Q209L (A>T) hotspot mutations in UM.
<p>Sequence analysis of the GNAQ Q209P (A>C), GNAQ Q209L (A>T) and GNA11Q209L (A>T) hotspot mutations in UM.</p
Distribution of mutational status.
<p>UM GNAQ and GNA11 mutation status varies with tumor location and eye color. The GNAQ Q209P allele is almost uniquely found in UM originating from the central/choroidal area that is exposed to focused visible light. The GNAQ Q209L mutation, on the other hand, is correlated with light eyes (blue/grey).</p><p>Distribution of mutational status.</p