7 research outputs found

    Evaluation of nutritional status in pediatric intensive care unit patients: the results of a multicenter, prospective study in Turkey

    Get PDF
    IntroductionMalnutrition is defined as a pathological condition arising from deficient or imbalanced intake of nutritional elements. Factors such as increasing metabolic demands during the disease course in the hospitalized patients and inadequate calorie intake increase the risk of malnutrition. The aim of the present study is to evaluate nutritional status of patients admitted to pediatric intensive care units (PICU) in Turkey, examine the effect of nutrition on the treatment process and draw attention to the need for regulating nutritional support of patients while continuing existing therapies.Material and MethodIn this prospective multicenter study, the data was collected over a period of one month from PICUs participating in the PICU Nutrition Study Group in Turkey. Anthropometric data of the patients, calorie intake, 90-day mortality, need for mechanical ventilation, length of hospital stay and length of stay in intensive care unit were recorded and the relationship between these parameters was examined.ResultsOf the 614 patients included in the study, malnutrition was detected in 45.4% of the patients. Enteral feeding was initiated in 40.6% (n = 249) of the patients at day one upon admission to the intensive care unit. In the first 48 h, 86.82% (n = 533) of the patients achieved the target calorie intake, and 81.65% (n = 307) of the 376 patients remaining in the intensive care unit achieved the target calorie intake at the end of one week. The risk of mortality decreased with increasing upper mid-arm circumference and triceps skin fold thickness Z-score (OR = 0.871/0.894; p = 0.027/0.024). The risk of mortality was 2.723 times higher in patients who did not achieve the target calorie intake at first 48 h (p = 0.006) and the risk was 3.829 times higher in patients who did not achieve the target calorie intake at the end of one week (p = 0.001). The risk of mortality decreased with increasing triceps skin fold thickness Z-score (OR = 0.894; p = 0.024).ConclusionTimely and appropriate nutritional support in critically ill patients favorably affects the clinical course. The results of the present study suggest that mortality rate is higher in patients who fail to achieve the target calorie intake at first 48 h and day seven of admission to the intensive care unit. The risk of mortality decreases with increasing triceps skin fold thickness Z-score

    SOME MOLECULAR TECHNIQUES APPLIED in DETERMINATION of ENVIRONMENTAL MICROBIAL DIVERSITY

    No full text
    The most important questions to be answered in the studies regarding the diversity of microorganisms in natural ecosystems are the functions of bacterial communities and how the compositions of these communities are affected by environmental changes. In order to answer these questions, there needs to be conducted advanced studies concerning the community structure. The total bacteria community studies require a huge amount of genetic data and high range of genetic diversity. Molecular techniques are quite valuable in researching the structure and diversity of bacterial communities. To combine various complementary molecular techniques is a nice strategy to keep track of microbial community changes in natural ecosystems. Combining some commonly-used techniques, i.e. polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), molecular cloning and fluorescence in situ hybridization (FISH), this review evaluates the advantages of using these techniques together in determining microbial diversity in environmental samples

    Profiling of Bacteria Capable of Precipitating CaCO3 on the Speleothem Surfaces in Dupnisa Cave, Kirklareli, Turkey

    No full text
    This study aimed to identify the bacteria which take part in the CaCO3 precipitation on the speleothem surfaces of Dupnisa Cave. In addition, this study highlighted the CaCO3 precipitation ability of the bacteria with negative urease activity. 150 isolates with microbial induced calcium carbonate precipitation features were selected and identified. They were belonging to Proteobacteria (53.3%), Firmicutes (32.7%) and, Actinobacteria (4.7%) phyla. The dominant bacterial species on all surface samples were Bacillus mycoides (9.3%), Bacillus zhangzhouensis (5.3%), and Serratia quinivorans (4%). Our results showed that most of the bacteria which can precipitate calcium carbonate on the B4 medium at the first 3 days, have urease negative activity. Within this study, it has been emphasized that other mechanisms enabling the precipitation of CaCO3 besides the urease mechanism should also be investigated. EDS analyses confirmed that the crystals were predominantly composed of calcium, carbon, and oxygen. In addition, the EDS highlighted that the two strains of Bacillus mycoides, isolated from two different surfaces, produced crystals of different morphology. Our study results to the identification of the bacteria which contribute to the Dupnisa Cave walls formation. Besides, our results showed that the Dupnisa Cave is housing bacteria with biotechnological and engineering applications potentials

    OPPORTUNISTIC BACTERIAL PATHOGENS OF AEROSOL AND WATER SAMPLES FROM DENTAL EQUIPMENTS

    No full text
    Water and aerosol derived from high-powered aerosolizing instruments in dental units represents a potential source of bacterial infection especially by Legionella and Pseudomonas. In this study, water and aerosol samples were taken from 41 dental units in Istanbul. In the samples taken, the count of aerobic heterotrophic bacteria and the presence of Legionella and Pseudomonas were researched by using culture methods. The aerosol samples were collected by active sampling. Physical and chemical parameters of the samples were also measured. The number of aerobic heterotrophic bacteria in 26 dental units out of 41 (63. 41%) exceeded the acceptable limit. Gram negative rods were the predominant bacteria. Legionella spp. and Pseudomonas spp. were detected in one and eight water samples (19.5%), respectively. Pseudomonas was not detected in aerosols. The presence of Legionella in the aerosol taken from high-speed drills has been searched and detected for the first time in Turkey. These findings indicate that investigation on bacterial contamination and related risk factors in dentistry should be expanded and effective precautions should be applied in order to reduce bacterial loads

    Biocides Effect on the Microbiologically Influenced Corrosion of Pure Copper by Desulfovibrio sp.

    No full text
    The aims of this study were to determine the corrosion behavior of pure copper in the presence of Desulfovibrio sp. and also to investigate the effects of glutaraldehyde (GD) and isothiazolinone (ISO) on the corrosion behavior of pure copper in the presence of this sulfate-reducing bacteria (SRB) strain by using electrochemical techniques. Electrochemical measurements of pure copper were carried out at specified time intervals (0, 8, 24, 48, and 96 hr) over a period of exposure. Corrosion rates of pure copper from anodic and cathodic Tafel slopes and corrosion potential (E-corr) were determined. Biofilm and corrosion products on the copper surfaces were observed by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectrometry (EDS) analyses. The effects of solution types (PC (Postgate's C medium) and SRB (Desulfovibrio sp.)) and exposure times of copper and biocides (ISO or GD) on the corrosion rates of pure copper were evaluated by statistical analyses. As a result of the FESEM analysis, biofilm formation was observed on the surfaces of pure copper exposed to the Desulfovibrio sp. cultures both with and without the biocides. The results show that the pure copper was corroded by Desulfovibrio sp. However, the addition of GD or ISO to the Desulfovibrio sp. culture resulted in a decrease in the corrosion rate of the pure copper. It was also observed that both of the biocides showed a similar effect on pure copper's corrosion rate caused by Desulfovibrio sp

    Bacterial production of ciprofloxacin and potential usage as a radiotracer.

    No full text
    Infectious diseases caused by bacteria that have become resistant to antibiotics have increased in prevalence, necessitating new methods for their diagnosis and treatment. The aim of this study was to compare the efficacy of synthetic ciprofloxacin to that of organic ciprofloxacin produced by cave microorganisms, as well as to evaluate the feasibility of using organic ciprofloxacin radiolabeled with technetium-99m as an imaging agent. Organic ciprofloxacin produced by cave bacteria isolated from sediment taken from the dark zone of Antalya's "Yark Sinkhole," (Turkey's 14th deepest cave), was purified using high-performance liquid chromatography. Purified organic ciprofloxacin and standard ciprofloxacin were radiolabeled with technetium-99m (99mTc), and their uptake by pathogenic microorganisms as well as potential as an imaging agent were examined. According to thin-layer radiochromatography, radiolabeling efficiencies were 98.99 ± 0.34 (n = 7) and 91.25 ± 1.84 (n = 7) for radiolabeled organic ciprofloxacin and standard ciprofloxacin respectively. The binding efficiency of radiolabeled organic ciprofloxacin at the 240th minute was higher compared with radiolabeled standard ciprofloxacin, especially with P.aeruginosa, MRSA, VRE and E.coli. The results demonstrate that radiolabeling with 99mTc does not alter the biological behavior of organic ciprofloxacin, and radiolabeled organic ciprofloxacin has potential as an imaging agent for the detection of bacterial infection. The original value of the study is the monitoring of the antibiofilm effects of untouched cave-derived organic antibiotics by radiolabeling with a radionuclide
    corecore