26 research outputs found

    Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins

    Get PDF
    It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1 and POLβ, DNA PK, replicative POLα, δ and ɛ, DNA ligase 1 and cell cycle regulatory protein cyclin A. Co-immunoprecipitation revealed that in this complex DNA repair proteins are physically associated to cyclin A and to DNA replication proteins including MCM7. This complex is endowed with DNA polymerase and protein kinase activity and is able to perform BER of uracil and AP sites. This finding suggests that a preassembled DNA repair machinery is constitutively active in cycling cells and is ready to be recruited at base damage and breaks occurring at replication forks

    Age-related changes in plasma levels of BDNF in Down syndrome patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of coronary artery diseases is low among Down Syndrome (DS) patients and they rarely die of atherosclerotic complications. Histopathological investigations showed no increase in atherosclerosis, or even a total lack of atherosclerotic changes, in DS</p> <p>Aim</p> <p>The aim of our study is to investigate the relationship between age and brain-derived neurotrophic factor (BDNF) levels in Down Syndrome (DS).</p> <p>Subjects and methods</p> <p>Three groups of DS patients were studied: the first consisted of 23 children (age 2-14 years); the second of 14 adults (age 20-50 years), the third group of 13 elderly persons (>60 years) and a controls group of 20 healthy patients (age 15-60 years).</p> <p>The analytes of interest were quantified using a biochip array analyzer (Evidence<sup>ÂŽ</sup>, Randox Ltd., Crumlin, UK).</p> <p>Results</p> <p>Plasma BDNF was higher in DS patients than in controls and there was a significant age-related increase. Serum levels of IL-6 and MCP-1 were also higher in DS children and adults, but not in older patients, than in healthy control. High levels of circulating BDNF may protect DS patients from the clinical complications of atherosclerosis. However, the striking drop in peripheral BDNF levels with age might predispose these patients to clinical manifestations of dementia in later life.</p

    Natural zeolites chabazite/phillipsite/analcime increase blood levels of antioxidant enzymes

    Get PDF
    Imbalance between reactive oxygen species generation and antioxidant capacity induces a condition known as oxidative stress which is implicated in numerous pathological processes. In this study we evaluated whether natural zeolites chabazite/phillipsite/analcime may affect the levels of different antioxidant enzymes (gluthatione peroxidase, superoxide dismutase, gluthatione reductase), total antioxidant status and oxidative stress in 25 clinically healthy men, both non-smokers and smokers. Measurements were performed on whole blood or on plasma samples before (T0) and after 4-weeks zeolites intake (T1). At T1, gluthatione peroxidase, superoxide dismutase and gluthatione reductase increased compared to T0 levels, both considering all subjects as joint and after subdivision in non-smokers and smokers. Differently, a reduction in total antioxidant status was observed at T1. Anyway, total antioxidant status resulted higher than the reference values in both groups at each time point. A decrease in lipid peroxidation, a major indicator of oxidative stress assessed by monitoring thiobarbituric acid reactive substances, was also observed in all subjects at T1. Our results suggested that chabazite/phillipsite/analcime may help to counteract oxidative stress in apparently healthy subjects exposed to different oxidative stress risk factors, such as smoking, thus representing a particular kind of food with potential antioxidant properties

    Low heart-type fatty acid binding protein level during aging may protect down syndrome people against atherosclerosis

    No full text
    Abstract Background Aging is considered an important independent risk factor for atherosclerosis. Down syndrome people (DS) display an accelerated aging process compared to healthy subjects, anyway they are relatively resistant to developing atherosclerosis. The mechanisms involved in such protective effect are not well known. Since heart-type fatty acid binding protein (H-FABP) is a protein involved in the transport of fatty acids and it has been recently correlated with the presence of atherosclerosis, we aimed to measure H-FABP level both in DS and in healthy subjects during aging to evaluate the association between this molecule, aging and atherosclerosis. Findings We quantified plasmatic H-FABP level in three groups of male DS and age-matched healthy subjects (children, age 2–14 years; adults, age 20–50 years; elderly, > 60 years) using a biochip array analyzer. We observed that aging is associated with increased H-FABP level in healthy subjects but not in DS which display both the same protein level in the different ages of life and have also lower level compared to their age-matched healthy subjects. Conclusion Reduced H-FABP level during aging in DS may play a protective role against atherosclerosis. The potential involvement of H-FABP in the relationship between aging, atherosclerosis and development of coronary artery disease needs further investigations.</p

    Inactivation of the LKB1-AMPK signaling pathway does not contribute to salivary gland tumor development - a short report

    No full text
    Activation of AMPK by the tumor suppressor LKB1 represents an essential gatekeeping step for cells under energetic stress to prevent their growth and proliferation by inhibiting mTOR activation, until the energy supply normalizes. The LKB1/AMPK pathway is frequently downregulated in various types of cancer, thereby uncoupling tumor cell growth and proliferation from energy supply. As yet, little information is available on the role of the LKB1/AMPK pathway in tumors derived from salivary gland tissues. We performed LKB1 protein expression and AMPK and mTOR activation analyses in several salivary gland tumor types and their respective healthy control tissues using immunohistochemistry. No significant downregulation of LKB1 expression or decreased activation of AMPK or mTOR were observed in any of the salivary gland tumors tested. In contrast, we found that the salivary gland tumors exhibited an increased rather than a decreased AMPK activation. Although the PI3K/Akt pathway was found to be activated in most of the analyzed tumor samples, the unchanged robust activity of LKB1/AMPK likely prevents (over)activation of mTOR. In contrast to many other types of cancer, inactivation or downregulation of the LKB1/AMPK pathway does not substantially contribute to the pathogenesis of salivary gland tumors
    corecore