3,643 research outputs found

    Normal fault earthquakes or graviquakes

    Get PDF
    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursor

    Present geodynamics of the northern Adriatic plate

    Get PDF
    The northern Adriatic plate is surrounded and squeezed by three orogens (i.e. Apennines, Alps and Dinarides). Therefore, in the same area, the effects of three independent subduction zones coexist and overlap. This supports the evidence that plate boundaries are passive features. The northeastward migration of the Apennines subduction hinge determines the present-day faster subsidence rate in the western side of the northern Adriatic (>1 mm/yr). This is recorded also by the dip of the foreland regional monocline, and the increase SW-ward of the depth of the Tyrrhenian layer, as well as the increase in thickness of the Pliocene and Pleistocene sediments. These data indicate the dominant influence of the Apennines subduction and the related asymmetric subsidence in the northern Adriatic realm. The Dinarides front has been subsided by the Apennines subduction hinge, as shown by the eroded Dalmatian anticlines in the eastern Adriatic Sea. GPS data show the horizontal pattern of motion along the front of the three belts surrounding the northern Adriatic plate. Values of shortening along the prisms are in the order of 2-3 mm/yr (Northern Apennines), 1-2 mm/yr (Southern Alps) and <1mm/yr (Dinarides). The pattern of the new GPS velocities relative to Eurasia account for different tectonic domains and the estimated strain rates are within 0.1 μstrain/yr. The shortening directions tend to be perpendicular to the thrust belt fronts, as expected. The areas where the strain rate sharply decreases across a tectonic feature (e.g., the Ferrara salient) are considered structures seismically loading the brittle laye

    A model of plate motion

    Get PDF
    The wide use of space geodesy techniques devoted to geophysical and geodynamical purposes has recently evidenced some limitations due to the intrinsic Terrestrial Reference Frame (TRF) definition. Current TRFs are defined under hypotheses suited to overcome the rank deficiency of the observations with respect to the parameters that have to be estimated, i.e. coordinates and velocities (Dermanis, 2001; Dermanis, 2002). From a geodetic point of view, one possibility implies the application of the no-net-rotation condition (NNR). One of the main geophysical consequences due to the application of this condition is that it allows only accurate estimations of relative motions, whilst other motions of geodynamical interest, for instance with respect to the inner layers of the Earth body, are not determinable. The main purpose of this paper is to propose a unified way to describe plate motions, overcoming the problems introduced by the NNR condition, in order to establish a new reference frame useful for geodynamical applications too. Since we believe relevant the role played by global tectonics inferences, we introduce the concept of the main tectonic sinusoid to propose an analytical description of the plate motions flow, which is polarized to the “west” in the hotspot reference frame

    Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas

    Get PDF
    The bile duct system and pancreas show many similarities due to their anatomical proximity and common embryological origin. Consequently, preneoplastic and neoplastic lesions of the bile duct and pancreas share analogies in terms of molecular, histological and pathophysiological features. Intraepithelial neoplasms are reported in biliary tract, as biliary intraepithelial neoplasm (BilIN), and in pancreas, as pancreatic intraepithelial neoplasm (PanIN). Both can evolve to invasive carcinomas, respectively cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary neoplasms arise in biliary tract and pancreas. Intraductal papillary neoplasm of the biliary tract (IPNB) share common histologic and phenotypic features such as pancreatobiliary, gastric, intestinal and oncocytic types, and biological behavior with the pancreatic counterpart, the intraductal papillary mucinous neoplasm of the pancreas (IPMN). All these neoplastic lesions exhibit similar immunohistochemical phenotypes, suggesting a common carcinogenic process. Indeed, CCA and PDAC display similar clinic-pathological features as growth pattern, poor response to conventional chemotherapy and radiotherapy and, as a consequence, an unfavorable prognosis. The objective of this review is to discuss similarities and differences between the neoplastic lesions of the pancreas and biliary tract with potential implications on a common origin from similar stem/progenitor cells

    Laryngeal mask airway in neonatal stabilization and transport: a retrospective study.

    Get PDF
    Laryngeal mask airway (LMA) may be considered by health caregivers of level I–II hospitals for neonatal resuscitation and stabilization before and during interhospital care, but literature provides little information on this aspect. This study reviewed the use of LMA during stabilization and transport in a large series of neonates. This is a retrospective study evaluating the use of LMA in infants who underwent emergency transport by the Eastern Veneto Neonatal Emergency Transport Service between January 2003 and December 2021. All data were obtained from transport registry, transport forms, and hospital charts. In total, 64/3252 transferred neonates (2%) received positive pressure ventilation with an LMA, with increasing trend over time (p = 0.001). Most of these neonates were transferred after birth (97%), due to a respiratory or neurologic disease (95%). LMA was used before the transport (n = 60), during the transport (n = 1), or both (n = 3). No device-related adverse effects were recorded. Sixty-one neonates (95%) survived and were discharged/transferred from the receiving center

    Time needed to intubate and suction a manikin prior to instituting positive pressure ventilation: a simulation trial

    Get PDF
    Tracheal suctioning in non-vigorous newborn delivered through meconium-stained amniotic fluid (MSAF) is supposed to delay initiation of positive pressure ventilation (PPV), but the magnitude of such delay is unknown. To compare the time of PPV initiation when performing immediate laryngoscopy with intubation and suctioning vs. performing immediate PPV without intubation in a manikin model. Randomized controlled crossover (AB/BA) trial comparing PPV initiation with or without endotracheal suctioning in a manikin model of non-vigorous neonates born through MSAF. Participants were 20 neonatologists and 20 pediatric residents trained in advanced airway management. Timing of PPV initiation was longer with vs. without endotracheal suctioning in both pediatric residents (mean difference 13\ua0s, 95% confidence interval 8 to 18\ua0s; p\ua0< 0.0001) and neonatologists (mean difference 12\ua0s, 95% confidence interval 8 to 16\ua0s; p < 0.0001). The difference in timing of PPV initiation was similar between pediatric residents and neonatologists (mean difference 12 1\ua0s, 95% confidence interval 12 7 to 6\ua0s; p\ua0= 0.85). Conclusions: Performing immediate laryngoscopy with intubation and suctioning was associated with longer\u2014but not clinically relevant\u2014time of initiation of PPV compared with immediate PPV without intubation in a manikin model. While suggesting negligible delay in starting PPV, further studies in a clinical setting are warranted. Registration: clinicaltrial.gov NCT04076189.What is Known:\u2022 Management of the non-vigorous newborn delivered through meconium-stained amniotic fluid remains still controversial.\u2022 Tracheal suctioning in non-vigorous newborn delivered through meconium-stained amniotic fluid is supposed to delay initiation of positive pressure ventilation, but the magnitude of such delay is unknown.What is New:\u2022 Performing immediate ventilation without intubation was associated with shorter\u2014but not clinically relevant\u2014time of initiation of ventilation compared to immediate laryngoscopy with intubation and suctioning in a manikin model.\u2022 Further studies in a clinical setting are warranted

    Fault on-off versus coseismic fluids reaction

    Get PDF
    AbstractThe fault activation (fault on) interrupts the enduring fault locking (fault off) and marks the end of a seismic cycle in which the brittle-ductile transition (BDT) acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic) and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expelled during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bands show different behavior, one in dilation/compression and one in compression/dilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor
    corecore