44 research outputs found

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    On the feasibility of cooling and trapping metastable alkaline-earth atoms

    Get PDF
    Metastability and long-range interactions of Mg, Ca, and Sr in the lowest-energy metastable 3P2^3P_2 state are investigated. The calculated lifetimes are 38 minutes for Mg*, 118 minutes for Ca*, and 17 minutes for Sr*, supporting feasibility of cooling and trapping experiments. The quadrupole-quadrupole long-range interactions of two metastable atoms are evaluated for various molecular symmetries. Hund's case (c) 4_g potential possesses a large 100-1000 K potential barrier. Therefore magnetic trap losses can possibly be reduced using cold metastable atoms in a stretched M=2 state. Calculations were performed in the framework of ab initio relativistic configuration interaction method coupled with the random-phase approximation.Comment: 8 pages, 2 figures; to appear in PR

    Rotationally induced Penning ionization of ultracold photoassociated helium dimers

    Full text link
    We have studied photoassociation of metastable \tripS helium atoms near the \tripS-\tripP asymptote by both ion detection in a magneto-optical trap and trap-loss measurements in a magnetic trap. A detailed comparison between the results of the two experiments gives insight into the mechanism of the Penning ionization process. We have identified four series of resonances corresponding to vibrational molecular levels belonging to different rotational states in two potentials. The corresponding spin states become quasi-purely quintet at small interatomic distance, and Penning ionization is inhibited by spin conservation rules. Only a weak rotational coupling is responsible for the contamination by singlet spin states leading to a detectable ion signal. However, for one of these series Bose statistics does not enable the rotational coupling and the series detected through trap-loss does not give rise to sufficient ionization for detection.Comment: 7 pages, 4 figures, submitted to EuroPhysics Letter

    Scaling laws in velocity-selective coherent-population-trapping laser cooling

    Get PDF
    One-dimensional laser cooling based on velocity-selective coherent population trapping (VSCPT) has been investigated numerically through the solution of the optical Bloch equations and through a Monte Carlo analysis. The 1→1 and 2→2 transitions have been examined as a function of the atomic recoil frequency, the spontaneous-emission decay rate, and the Rabi frequency of the cooling laser. It has been found that for a large set of those parameters, the VSCPT cooling process may be described through scaling-law relations. The scaling laws are not valid at long atom-laser interaction times or large Rabi frequencies, where the atomic Doppler shift plays a significant role in the atomic motion evolution. Similar results for two atomic transitions suggest the validity of the scaling law for any one-dimensional VSCPT process

    Long-range diatomic s + p potentials of heavy rare gases

    Get PDF
    We examine the long-range part of the rare-gas diatomic potentials that connect to the R͕(nϪ1)p 5 ns͖ ϩR͕(nϪ1)p 5 np͖ atomic states in the separated atom limit ͑nϭ3, 4, 5, and 6 for Ne, Ar, Kr, and Xe, respectively͒. We obtain our potentials by diagonalization of a Hamiltonian matrix containing the atomic energies and the electric dipole-dipole interaction, with experimentally determined parameters ͑atomic energies, lifetimes, transition wavelengths, and branching ratios͒ as input. Our numerical studies focus on Ne and Kr in this paper, but apply in principle to all other rare gases lacking hyperfine structure. These diatomic potentials are essential for applications in which homonuclear rare-gas pairs interact at large internuclear separations, greater than about 20 Bohr radii. Among such applications are the study of cold atomic collisions and photoassociative spectroscopy

    Scattering length of the ground state Mg+Mg collision

    Get PDF
    We have constructed the X 1SIGMAg+ potential for the collision between two ground state Mg atoms and analyzed the effect of uncertainties in the shape of the potential on scattering properties at ultra-cold temperatures. This potential reproduces the experimental term values to 0.2 inverse cm and has a scattering length of +1.4(5) nm where the error is prodominantly due to the uncertainty in the dissociation energy and the C6 dispersion coefficient. A positive sign of the scattering length suggests that a Bose-Einstein condensate of ground state Mg atoms is stable.Comment: 15 pages, 3 figures, Submitted Phys. Rev.

    Quantum-state control in optical lattices

    Full text link
    We study the means to prepare and coherently manipulate atomic wave packets in optical lattices, with particular emphasis on alkali atoms in the far-detuned limit. We derive a general, basis independent expression for the lattice operator, and show that its off-diagonal elements can be tailored to couple the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend themselves particularly well to reservoir engineering via well controlled fluctuations in the potential, making the atom/lattice system attractive for the study of decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199
    corecore