14 research outputs found

    Is GIFT Compatible with the Teaching of Donum Vitae?

    Get PDF

    HIGH-FREQUENCY, HEAT TREATMENT-INDUCED INACTIVATION OF THE PHOSPHINOTHRICIN RESISTANCE GENE IN TRANSGENIC SINGLE CELL-SUSPENSION CULTURES OF MEDICAGO-SATIVA

    No full text
    WALTER C, BROER I, HILLEMANN D, PĂŒhler A. HIGH-FREQUENCY, HEAT TREATMENT-INDUCED INACTIVATION OF THE PHOSPHINOTHRICIN RESISTANCE GENE IN TRANSGENIC SINGLE CELL-SUSPENSION CULTURES OF MEDICAGO-SATIVA. MOLECULAR & GENERAL GENETICS. 1992;235(2-3):189-196.One descendant of the Medicago sativa Ra-3 transformant T304 was analysed with respect to the somatic stability of the synthetic phosphinothricin-N-acetyltransferase (pat) gene which was used as a selective marker and was under the control of the 5'/3' expression signals of the cauliflower mosaic virus (CaMV) gene VI. In order to quantify gene instability, we developed a system for culturing and regenerating individual cells. Single cell suspension cultures derived from T304 and the ancestral non-transgenic M. sativa cultivar Ra-3, were established. The cells were regenerated into monoclonal calli. In transgenic calli, the phosphinothricin (Pt)-resistance phenotype was retained after more than 2 months of non-selective growth. In contrast, up to 12% of the suspension culture cells grown under nonselective conditions and at constant temperature (25-degrees-C) lost the herbicide-resistance phenotype within 150 days. Surprisingly, a heat treatment (37-degrees-C), lasting for 10 days, during the culture period resulted in an almost complete (95%) loss of the Pt resistance of the suspension culture cells. However, the frequency of cell division was identical in cultures grown under normal and heat treatment conditions. A biochemical test revealed that no phosphinothricin-N-acetyltransferase activity was present in heat treated, Pt-sensitive cells. The resistance level of the Pt-sensitive transgenic cells was equivalent to that of the wild-type cells. A PCR analysis confirmed the presence of the pat gene in heat treated, Pt-sensitive cells. From these results it is concluded that the Pt resistance gene was heat-inactivated at a high frequency in the M. sativa suspension cultures

    Testing the Effect of Relative Pollen Productivity on the REVEALS Model: A Validated Reconstruction of Europe-Wide Holocene Vegetation

    Get PDF
    Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity
    corecore