45 research outputs found

    Fatal Elephant Endotheliotropic Herpesvirus Infection of Two Young Asian Elephants

    Get PDF
    Elephant endotheliotropic herpesvirus (EEHV) can cause a devastating haemorrhagic disease in young Asian elephants worldwide. Here, we report the death of two young Asian elephants after suffering from acute haemorrhagic disease due to EEHV-1A infection. We detected widespread distribution of EEHV-1A in various organs and tissues of the infected elephants. Enveloped viral particles accumulated within and around cytoplasmic electron-dense bodies in hepatic endothelial cells were detected. Attempts to isolate the virus on different cell cultures showed limited virus replication; however, late viral protein expression was detected in infected cells. We further showed that glycoprotein B (gB) of EEHV-1A possesses a conserved cleavage site Arg-X-Lys/Arg-Arg that is targeted by the cellular protease furin, similar to other members of the Herpesviridae. We have determined the complete 180 kb genome sequence of EEHV-1A isolated from the liver by next-generation sequencing and de novo assembly. As virus isolation in vitro has been unsuccessful and limited information is available regarding the function of viral proteins, we have attempted to take the initial steps in the development of suitable cell culture system and virus characterization. In addition, the complete genome sequence of an EEHV-1A in Europe will facilitate future studies on the epidemiology and diagnosis of EEHV infection in elephants

    Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge

    Get PDF
    Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections

    A novel antigen capture ELISA for the specific detection of IgG antibodies to elephant endotheliotropic herpes virus

    Get PDF
    BACKGROUND Elephants are classified as critically endangered animals by the International Union for Conservation of Species (IUCN). Elephant endotheliotropic herpesvirus (EEHV) poses a large threat to breeding programs of captive Asian elephants by causing fatal haemorrhagic disease. EEHV infection is detected by PCR in samples from both clinically ill and asymptomatic elephants with an active infection, whereas latent carriers can be distinguished exclusively via serological assays. To date, identification of latent carriers has been challenging, since there are no serological assays capable of detecting seropositive elephants. RESULTS Here we describe a novel ELISA that specifically detects EEHV antibodies circulating in Asian elephant plasma/serum. Approximately 80 % of PCR positive elephants display EEHV-specific antibodies. Monitoring three Asian elephant herds from European zoos revealed that the serostatus of elephants within a herd varied from non-detectable to high titers. The antibody titers showed typical herpes-like rise-and-fall patterns in time which occur in all seropositive animals in the herd more or less simultaneously. CONCLUSIONS This study shows that the developed ELISA is suitable to detect antibodies specific to EEHV. It allows study of EEHV seroprevalence in Asian elephants. Results confirm that EEHV prevalence among Asian elephants (whether captive-born or wild-caught) is high

    Intestinal Tropism of a Betacoronavirus (Merbecovirus) in Nathusius’s Pipistrelle Bat (Pipistrellus nathusii), Its Natural Host

    Get PDF
    The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-βCoV, in the intestine of its natural host, Nathusius’s Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-βCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-βCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-βCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-βCoV has a tropism for the intestinal epithelium of its natural host, Nathusius’s Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission.</p

    Zika virus infection perturbs osteoblast function

    Get PDF
    Zika virus (ZIKV) infection is typically characterized by a mild self-limiting disease presenting with fever, rash, myalgia and arthralgia and severe fetal complications during pregnancy such as microcephaly, subcortical calcifications and arthrogyropsis. Virus-induced arthralgia due to perturbed osteoblast function has been described for other arboviruses. In case of ZIKV infection, the role of osteoblasts in ZIKV pathogenesis and bone related pathology remains unknown. Here, we study the effect of ZIKV infection on osteoblast differentiation, maturation and function by quantifying activity and gene expression of key biomarkers, using human bone marrow-derived mesenchymal stromal cells (MSCs, osteoblast precursors). MSCs were induced to differentiate into osteoblasts and we found that osteoblasts were highly susceptible to ZIKV infection. While infection did not cause a cytopathic effect, a significant reduction of key osteogenic markers such as ALP, RUNX2, calcium contents and increased expression of IL6 in ZIKV-infected MSCs implicated a delay in osteoblast development and maturation, as compared to uninfected controls. In conclusion, we have developed and characterized a new in vitro model to study the role of bone development in ZIKV pathogenesis, which will help to identify possible new targets for developing therapeutic and preventive measures

    The three-dimensional organization of telomeres in the nucleus of mammalian cells

    Get PDF
    BACKGROUND: The observation of multiple genetic markers in situ by optical microscopy and their relevance to the study of three-dimensional (3D) chromosomal organization in the nucleus have been greatly developed in the last decade. These methods are important in cancer research because cancer is characterized by multiple alterations that affect the modulation of gene expression and the stability of the genome. It is, therefore, essential to analyze the 3D genome organization of the interphase nucleus in both normal and cancer cells. RESULTS: We describe a novel approach to study the distribution of all telomeres inside the nucleus of mammalian cells throughout the cell cycle. It is based on 3D telomere fluorescence in situ hybridization followed by quantitative analysis that determines the telomeres' distribution in the nucleus throughout the cell cycle. This method enables us to determine, for the first time, that telomere organization is cell-cycle dependent, with assembly of telomeres into a telomeric disk in the G2 phase. In tumor cells, the 3D telomere organization is distorted and aggregates are formed. CONCLUSIONS: The results emphasize a non-random and dynamic 3D nuclear telomeric organization and its importance to genomic stability. Based on our findings, it appears possible to examine telomeric aggregates suggestive of genomic instability in individual interphase nuclei and tissues without the need to examine metaphases. Such new avenues of monitoring genomic instability could potentially impact on cancer biology, genetics, diagnostic innovations and surveillance of treatment response in medicine

    Sars-cov-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site

    Get PDF
    Coronavirus entry is mediated by the spike protein that binds the receptor and mediates fusion after cleavage by host proteases. The proteases that mediate entry differ between cell lines, and it is currently unclear which proteases are relevant in vivo. A remarkable feature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the presence of a multibasic cleavage site (MBCS), which is absent in the SARS-CoV spike. Here, we report that the SARS-CoV-2 spike MBCS increases infectivity on human airway organoids (hAOs). Compared with SARS-CoV, SARS-CoV-2 entered faster into Calu-3 cells and, more frequently, formed syncytia in hAOs. Moreover, the MBCS increased entry speed and plasma membrane serine protease usage relative to cathepsin-mediated endosomal entry. Blocking serine proteases, but not cathepsins, effectively inhibited SARS-CoV-2 entry and replication in hAOs. Our findings demonstrate that SARS-CoV-2 enters relevant airway cells using serine proteases, and suggest that the MBCS is an adaptation to this viral entry strategy

    A Recombinant Influenza A Virus Expressing Domain III of West Nile Virus Induces Protective Immune Responses against Influenza and West Nile Virus

    Get PDF
    West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 105 TCID50 Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines
    corecore