60 research outputs found

    Vibration-based Health Monitoring of Earth Structures

    Get PDF
    Vibration-based health monitoring (VBHM) has successfully been used to assess the structural damage to bridges, buildings, aircraft, and rotating machinery. There is significant incentive to apply VBHM techniques to the damage detection and conditional assessment of earth structures (geostructures), e.g., foundations, dams, embankments, and tunnels, to improve design, construction, and performance. An experimental program was carried out to explore the efficacy of VBHM of earth structures. A vibratory roller compactor, instrumented with triaxial accelerometers to continuously measure drum and frame vibrations, was operated on a number of underlying material structures with varying properties. Time-domain and frequency-domain analyses of the coupled machine/earth structure response were performed to glean machine vibration features that reflect changes in underlying structural properties. Results illustrate that drum and frame acceleration amplitudes were fairly insensitive to changes in underlying media stiffness; however, drum acceleration frequency components (harmonics) were found to be sensitive to changes in underlying media and changes in soil properties during compaction. The strata underlying the soil undergoing compaction was found to strongly affect drum vibration characteristics.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A Novel Methodology Using Simplified Approaches for Identification of Cracks in Beams

    Full text link
    Abstract In this paper, natural frequency based forward and inverse methods are proposed for identifying multiple cracks in beams. Forward methods include simplified definition of the natural frequency drops caused by the cracks. The ratios between natural frequencies obtained from multi-cracked and un-cracked beams are determined by an approach that uses the local flexibility model of cracks. This approach does not consider nonlinear crack effects that can be easily neglected when the number of cracks is not excessive. In addition, an expression, which removes the necessity of repeating natural frequency analyses, is given for identifying the connection between the crack depths and natural frequency drops. These simplified approaches play crucial role in solving inverse problem using constituted crack detection methodology. Solution needs a number of measured modal frequency knowledge two times more than the number of cracks to be detected. Efficiencies of the methods are verified using the natural frequency ratios obtained by the finite element package. The crack detection methodology is also validated using some experimental natural frequency ratios given in current literature. Results show that the locations and depths ratios of cracks are successfully predicted by using the methods presented
    corecore