18 research outputs found

    Catalogue of solar activity during 1957

    Get PDF
    Catalog of major solar activity during 195

    Catalogue of Solar Activity During 1958, Volume III

    Get PDF
    Solar flares, sunspots, radio emissions, solar events, geomagnetic storms, solar-terrestrial effects, and balloon flights for 195

    Solar activity catalogue. Volume 4 - Catalogue of solar activity during 1959

    Get PDF
    Solar activity catalog covering solar flares, terrestrial effects, plage regions, radio emissions, geomagnetic storms, and balloon flight

    Catalogue of Solar Activity During 1960-1963, Volume V

    Get PDF
    Catalog on solar activity from 1960 to 196

    Low-energy particle events associated with sector boundaries

    Full text link
    Onsets of some 40 to 45 low-energy proton events during the years 1957–1969 coincided in time with transits of well-defined sector boundaries across the Earth. These events can be interpreted as long-lived proton streams filling up some of the magnetic sectors, indicating an acceleration of protons which is not associated with typical proton-producing flares. The sharp onsets of these particle streams, as well as a deficiency of flare-associated particle events shortly before the boundary transit, indicate that in some cases magnetic sector boundaries can inhibit transverse propagation of low-energy particles in the solar corona or in interplanetary space.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43744/1/11207_2004_Article_BF00155310.pd

    Study of the post-flare loops on 29 July 1973

    Full text link
    We present revised values of temperature and density for the flare loops of 29 July 1973 and compare the revised parameters with those obtained aboard the SMM for the two-ribbon flare of 21 May 1980. The 21 May flare occurred in a developed sunspot group; the 29 July event was a spotless two-ribbon flare. We find that the loops in the spotless flare extended higher (by a factor of 1.4–2.2), were less dense (by a factor of 5 or more in the first hour of development), were generally hotter, and the whole loop system decayed much slower than in the spotted flare (i.e. staying at higher temperature for a longer time). We also align the hot X-ray loops of the 29 July flare with the bright Hα ribbons and show that the Hα emission is brightest at the places where the spatial density of the hot elementary loops is enhanced.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43753/1/11207_2004_Article_BF00151609.pd

    Towards sustainable energy : generation of hydrogen fuel using nuclear energy

    No full text
    The increasing demand for sustainable energy results in the development of new technologies of energy generation. The key objective of hydrogen economy is the introduction of hydrogen as main energy carrier, along with electricity, on a global scale. The key goal is the development of hydrogen-related technologies needed for hydrogen generation, hydrogen storage, hydrogen transportation and hydrogen distribution as well as hydrogen safety systems. It is commonly believed that hydrogen is environmentally clean since its combustion results in the formation of water. However, the technology currently employed for the generation of hydrogen from natural gas, does in fact lead to the emission of greenhouse gases and climate change. Therefore, the key issues in the introduction of hydrogen economy involve the development of environmentally clean hydrogen production technology as well as storage and transport. The clean options available for hydrogen generation using nuclear energy; such as advanced nuclear fission and, ultimately, nuclear fusion, are discussed. The latter, which is environmentally clean, is expected to be the primary approach in the production of hydrogen fuel at the global scale. The present work considers the effect of hydrogen on properties of TiO2 and its solid solutions in the contexts of photocatalytic energy conversion and the effect of tritium on advanced tritium breeders
    corecore