3,397 research outputs found

    Relative astrometry of the J=1-0, v=1 and v=2 SiO masers towards R Leonis Minoris using VERA

    Full text link
    Oxygen-rich Asymptotic Giant Branch (AGB) stars are intense emitters of SiO and H2_2O maser lines at 43 (J=1-0, v=1 and 2) and 22 GHz, respectively. VLBI observations of the maser emission provides a unique tool to sample the innermost layers of the circumstellar envelopes in AGB stars. Nevertheless, the difficulties in achieving astrometrically aligned v=1 and v=2 SiO maser maps have traditionally prevented a unique interpretation of the observations in terms of physical underlying conditions, which depend on the nature of the SiO pumping mechanism. We have carried out observations of the SiO and H2_2O maser emission towards RLMi, using the astrometric capabilities of VERA. Due to the too-weak emission of the reference calibrator we had to develop a special method to accurately relate the coordinates for both transitions. We present relative astrometrically aligned v=1 and v=2 J=1-0 SiO maser maps, at multiple epochs, and discuss the astrophysical results. The incorporation of astrometric information into the maps of SiO masers challenges the weak points in the current theoretical models, which will need further refinements to address the observations results.Comment: 17 pages, 8 figure

    High Precision Astrometric Millimeter VLBI Using a New Method for Atmospheric Calibration

    Full text link
    We describe a new method which achieves high precision Very Long Baseline Interferometry (VLBI) astrometry in observations at millimeter wavelengths. It combines fast frequency-switching observations, to correct for the dominant non-dispersive tropospheric fluctuations, with slow source-switching observations, for the remaining ionospheric dispersive terms. We call this method Source-Frequency Phase Referencing. Provided that the switching cycles match the properties of the propagation media, one can recover the source astrometry. We present an analytic description of the two-step calibration strategy, along with an error analysis to characterize its performance. Also, we provide observational demonstrations of a successful application with observations using the Very Long Baseline Array at 86 GHz of the pairs of sources 3C274 & 3C273 and 1308+326 & 1308+328, under various conditions. We conclude that this method is widely applicable to millimeter VLBI observations of many target sources, and unique in providing bona-fide astrometrically registered images and high precision relative astrometric measurements in mm-VLBI using existing and newly built instruments.Comment: Astronomical Journal, accepted for publicatio

    Physical properties of high-mass clumps in different stages of evolution

    Full text link
    (Abridged) Aims. To investigate the first stages of the process of high-mass star formation, we selected a sample of massive clumps previously observed with the SEST at 1.2 mm and with the ATNF ATCA at 1.3 cm. We want to characterize the physical conditions in such sources, and test whether their properties depend on the evolutionary stage of the clump. Methods. With ATCA we observed the selected sources in the NH3(1,1) and (2,2) transitions and in the 22 GHz H2O maser line. Ammonia lines are a good temperature probe that allow us to accurately determine the mass and the column-, volume-, and surface densities of the clumps. We also collected all data available to construct the spectral energy distribution of the individual clumps and to determine if star formation is already occurring, through observations of its most common signposts, thus putting constraints on the evolutionary stage of the source. We fitted the spectral energy distribution between 1.2 mm and 70 microns with a modified black body to derive the dust temperature and independently determine the mass. Results. The clumps are cold (T~10-30 K), massive (M~10^2-10^3 Mo), and dense (n(H2)>~10^5 cm^-3) and they have high column densities (N(H2)~10^23 cm^-2). All clumps appear to be potentially able to form high-mass stars. The most massive clumps appear to be gravitationally unstable, if the only sources of support against collapse are turbulence and thermal pressure, which possibly indicates that the magnetic field is important in stabilizing them. Conclusions. After investigating how the average properties depend on the evolutionary phase of the source, we find that the temperature and central density progressively increase with time. Sources likely hosting a ZAMS star show a steeper radial dependence of the volume density and tend to be more compact than starless clumps.Comment: Published in A&A, Vol. 556, A1
    corecore