43 research outputs found

    Towards large scale microwave treatment of ores: Part 1 – Basis of design, construction and commissioning

    Get PDF
    Despite over thirty years of work, microwave pre-treatment processes for beneficiation of ores have not progressed much further than laboratory testing. In this paper we present a scaleable pilot-scale system for the microwave treatment of ores capable of operating at throughputs of up to 150tph. This has been achieved by confining the electric field produced from two 100kW generators operating at 896MHz in a gravity fed vertical flow system using circular choking structures yielding power densities of at least 6x108 W/m3 in the heated mineral phases. Measured S11 scattering parameters for a quartzite ore (-3.69±0.4dB) in the as-built applicator correlated well with the simulation (-3.25dB), thereby validating our design approach. We then show that by fully integrating the applicator with a materials handling system based on the concept of mass flow, we achieve a reliable, continuous process. The system was used to treat a range of porphyry copper ores

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The role of research networks for science-policy collaboration in coastal areas

    No full text
    This paper reviews the approach taken by several UK coastal partnerships in developing research strategies and programmes. It reports on the status of these research initiatives and describes how the co-ordination and communication of scientific research have been approached through active partnerships with universities and the wider research community. Results of semi-structured interviews are followed by in-depth case studies of research networks on the Sefton Coast (focusing on coastal morphology) and the Severn Estuary (focusing on coastal change and climate change impacts). The results reveal the constraints and opportunities that exist in bringing together a variety of knowledge holders in the coastal zone. The paper identifies key elements of these initiatives and highlights lessons that can be applied to the development of other research initiatives in order to achieve science supported, ecosystem-based management.Integrated coastal management UK Science-Policy Research
    corecore