311 research outputs found

    Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate

    Get PDF
    Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 µM. 1,1-Dichloroethane and chloroethane were found to be the main transformation products. A fraction of the CH3CCl3 was completely dechlorinated via an unknown pathway. The rate of transformation and the transformation products formed depended on the concentrations of CH3CCl3, acetate and sulfate. With an increase in sulfate and CH3CCl3 concentrations and a decrease in acetate concentration, the degree of CH3CCl3 dechlorination decreased. Both packed-bed reactor studies and batch experiments with bromoethanesulfonic acid, an inhibitor of methanogenesis, demonstrated the involvement of methanogens in CH3CCl3 transformation. Batch experiments with molybdate showed that sulfate-reducing bacteria in the packed-bed reactor were also able to transform CH3CCl3. However, packed-bed reactor experiments indicated that sulfate reducers only had a minor contribution to the overall transformation in the packed-bed reactor.

    Chemiosmotic Coupling in Methanobacterium thermoautotrophicum:Hydrogen-Dependent Adenosine 5'-Triphosphate Synthesis by Subcellular Particles

    Get PDF
    Hydrogenase and the adenosine 5'-triphosphate (ATP) synthetase complex, two enzymes essential in ATP generation in Methanobacterium thermoautotrophicum, were localized in internal membrane systems as shown by cytochemical techniques. Membrane vesicles from this organism possessed hydrogenase and adenosine triphosphatase (ATPase) activity and synthesized ATP driven by hydrogen oxidation or a potassium gradient. ATP synthesis depended on anaerobic conditions and could be inhibited in membrane vesicles by uncouplers, nigericin, or the ATPase inhibitor N,N'-dicyclohexylcarbodiimide. The presence of an adenosine 5'-diphosphate-ATP translocase was postulated. With fluorescent dyes, a membrane potential and pH gradient were demonstrated

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1220/thumbnail.jp

    Morphology and phylogeny of a new species of anaerobic ciliate, Trimyema finlayi n. sp., with endosymbiotic methanogens

    Get PDF
    Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum, demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum, which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical, (6 substitutions, 1479 compared bases), and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema, within the class Plagiopylea. Various microscopic techniques demonstrated that Trimyema finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts 16S rRNA gene showed that they belong to the genus Methanocorpusculum, which was confirmed using fluorescence in situ hybridisation with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter. In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, ‘Trimyema sp.’, which was sampled approximately 22 years earlier, at a distant (~400 km) geographical location. Identification of the same endosymbiont species in the two separate isolates of T. finlayi n. sp. provides evidence for spatial and temporal stability of the Methanocorpusculum-T. finlayi n. sp. endosymbiosis. T. finlayi n. sp. and T. compressum provide an example of two closely related anaerobic ciliates that have endosymbionts from different methanogen genera, suggesting that the endosymbionts have not co-speciated with their hosts
    corecore