7,874 research outputs found

    On the chemical composition of L-chondrites

    Get PDF
    Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites

    User needs, benefits and integration of robotic systems in a space station laboratory

    Get PDF
    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established

    Long-range sound-mediated dark soliton interactions in trapped atomic condensates

    Full text link
    A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction

    Design of a Temperature-Compensated Induction Extensometer

    Get PDF
    By proper choice of materials, dimensions and circuit parameters, it is possible to design a linear displacement transducer, or extensometer, to have zero net thermal drift over any given temperature range. The chief limitation is the inability of wires and insulation to withstand very high temperatures. An extensometer has been designed and tested which could theoretically measure displacements up to 150 mm with a maximum error of ±0.15 mm caused by thermal effects over the temperature range from 0° to 1000°C. Experimental limitations prevented testing at temperatures higher than 500°C, but measured and theoretical results were in good agreement over that range. The principles involved in the temperature compensation will be discussed

    Slow 4He^{4}He Quenches Produce Fuzzy, Transient Vortices

    Full text link
    We examine the Zurek scenario for the production of vortices in quenches of liquid 4He^{4}He in the light of recent experiments. Extending our previous results to later times, we argue that short wavelength thermal fluctuations make vortices poorly defined until after the transition has occurred. Further, if and when vortices appear, it is plausible that that they will decay faster than anticipated from turbulence experiments, irrespective of quench rates.Comment: 4 pages, Revtex file, no figures Apart from a more appropriate title, this paper differs from its predecessor by including temperature, as well as pressure, quenche
    corecore