697 research outputs found

    Designing molecules to bypass the singlet-triplet bottleneck in the electroluminescence of organic light-emitting-diode materials

    Full text link
    Electroluminescence in organic light emitting diode (OLED) materials occurs via the recombination of excitonic electrons-hole pairs Only the singlet excitons of commonly used OLED materials, e.g., Aluminum trihydroxyquinoline (AlQ3_3), decay radiatively, limiting the external quantum efficiency to a maximum 25%. Thus 75% of the energy is lost due to the triplet bottleneck for radiative recombination. We consider molecules derived from AlQ3_3 which bypass the triplet bottleneck by designing structures which contain strong spin-orbit coupling. As a first stage of this work, groundstate energies and vertical excitation energies of Al-arsenoquinolines and Al-boroarsenoquinolines are calculated. It is found that the substitution of N by As leads to very favourable results, while the boron substitution leads to no advantage.Comment: 4 pages, 4 figue

    Effects of boundary roughness on a Q-factor of whispering-gallery-mode lasing microdisk cavities

    Full text link
    We perform numerical studies of the effect of sidewall imperfections on the resonant state broadening of the optical microdisk cavities for lasing applications. We demonstrate that even small edge roughness causes a drastic degradation of high-Q whispering gallery (WG) mode resonances reducing their Q-values by many orders of magnitude. At the same time, low-Q WG resonances are rather insensitive to the surface roughness. The results of numerical simulation obtained using the scattering matrix technique, are analyzed and explained in terms of wave reflection at a curved dielectric interface combined with the examination of Poincare surface of sections in the classical ray picture.Comment: 4 pages, 3 figure

    Ambipolar charge injection and transport in a single pentacene monolayer island

    Full text link
    Electrons and holes are locally injected in a single pentacene monolayer island. The two-dimensional distribution and concentration of the injected carriers are measured by electrical force microscopy. In crystalline monolayer islands, both carriers are delocalized over the whole island. On disordered monolayer, carriers stay localized at their injection point. These results provide insight into the electronic properties, at the nanometer scale, of organic monolayers governing performances of organic transistors and molecular devices.Comment: To be published in Nano Letter

    Dithienylbenzothiadiazole-based donor-acceptor organic semiconductors and effect of end capping groups on organic field effect transistor performance

    Get PDF
    Donor-Acceptor-Donor (D-A-D) based conjugated molecules 4,7-bis(5-(4-butoxyphenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BOP-TBT) and 4,7-bis(5-(4-trifluoromethyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TFP-TBT) using thiophene-benzothiadiazole-thiophene central core with trifluoromethyl phenyl and butoxyphenyl end capping groups were designed and synthesised via Suzuki coupling. Optical, electrochemical, thermal, and organic field effect transistor (OFET) device properties of BOP-TBT and TFP-TBT were investigated. Both small molecules possess two absorption bands. Optical band gaps were calculated from the absorption cut off to be in the range of 2.06–2.25 eV. Cyclic voltammetry indicated reversible oxidation and reduction processes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were calculated to be in the range of 5.15–5.40 eV and 3.25–3.62 eV, respectively. Upon testing both materials for OFET, trifluoromethylphenyl end capped material (TFP-TBT) shows n-channel behaviour whereas butoxyphenyl end capped material (BOP-TBT) shows p-channel behaviour. Density functional theory calculations correlated with shifting of HOMO-LUMO energy levels with respect to end capping groups. Vacuum processed OFET of these materials have shown highest hole carrier mobility of 0.02 cm2/Vs and electron carrier mobility of 0.004 cm2/Vs, respectively using Si/SiO2 substrate. By keeping the central D-A-D segment and just by tuning end capping groups gives both p- and n-channel organic semiconductors which can be prepared in a single step using straightforward synthesis

    Transport in α\alpha-Sexithiophene Films

    Full text link
    The field-effect mobility of hole polarons in α\alpha-sexithiophene, measured in thin film transistors, was shown to be well fitted by Holstein's small polaron theory. Unfortunately, Holstein's formulation is based on an integral that does not converge. We show that the data are well fitted by a theory of polaron transport that was successful in accounting for mobility in molecular crystals of naphthalene.Comment: 10 pages, RevTex, one PostScript file aviable upon reques
    • …
    corecore