697 research outputs found
Designing molecules to bypass the singlet-triplet bottleneck in the electroluminescence of organic light-emitting-diode materials
Electroluminescence in organic light emitting diode (OLED) materials occurs
via the recombination of excitonic electrons-hole pairs Only the singlet
excitons of commonly used OLED materials, e.g., Aluminum trihydroxyquinoline
(AlQ), decay radiatively, limiting the external quantum efficiency to a
maximum 25%. Thus 75% of the energy is lost due to the triplet bottleneck for
radiative recombination. We consider molecules derived from AlQ which
bypass the triplet bottleneck by designing structures which contain strong
spin-orbit coupling. As a first stage of this work, groundstate energies and
vertical excitation energies of Al-arsenoquinolines and Al-boroarsenoquinolines
are calculated. It is found that the substitution of N by As leads to very
favourable results, while the boron substitution leads to no advantage.Comment: 4 pages, 4 figue
Effects of boundary roughness on a Q-factor of whispering-gallery-mode lasing microdisk cavities
We perform numerical studies of the effect of sidewall imperfections on the
resonant state broadening of the optical microdisk cavities for lasing
applications. We demonstrate that even small edge roughness causes a drastic
degradation of high-Q whispering gallery (WG) mode resonances reducing their
Q-values by many orders of magnitude. At the same time, low-Q WG resonances are
rather insensitive to the surface roughness. The results of numerical
simulation obtained using the scattering matrix technique, are analyzed and
explained in terms of wave reflection at a curved dielectric interface combined
with the examination of Poincare surface of sections in the classical ray
picture.Comment: 4 pages, 3 figure
Ambipolar charge injection and transport in a single pentacene monolayer island
Electrons and holes are locally injected in a single pentacene monolayer
island. The two-dimensional distribution and concentration of the injected
carriers are measured by electrical force microscopy. In crystalline monolayer
islands, both carriers are delocalized over the whole island. On disordered
monolayer, carriers stay localized at their injection point. These results
provide insight into the electronic properties, at the nanometer scale, of
organic monolayers governing performances of organic transistors and molecular
devices.Comment: To be published in Nano Letter
Dithienylbenzothiadiazole-based donor-acceptor organic semiconductors and effect of end capping groups on organic field effect transistor performance
Donor-Acceptor-Donor (D-A-D) based conjugated molecules 4,7-bis(5-(4-butoxyphenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BOP-TBT) and 4,7-bis(5-(4-trifluoromethyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TFP-TBT) using thiophene-benzothiadiazole-thiophene central core with trifluoromethyl phenyl and butoxyphenyl end capping groups were designed and synthesised via Suzuki coupling. Optical, electrochemical, thermal, and organic field effect transistor (OFET) device properties of BOP-TBT and TFP-TBT were investigated. Both small molecules possess two absorption bands. Optical band gaps were calculated from the absorption cut off to be in the range of 2.06–2.25 eV. Cyclic voltammetry indicated reversible oxidation and reduction processes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were calculated to be in the range of 5.15–5.40 eV and 3.25–3.62 eV, respectively. Upon testing both materials for OFET, trifluoromethylphenyl end capped material (TFP-TBT) shows n-channel behaviour whereas butoxyphenyl end capped material (BOP-TBT) shows p-channel behaviour. Density functional theory calculations correlated with shifting of HOMO-LUMO energy levels with respect to end capping groups. Vacuum processed OFET of these materials have shown highest hole carrier mobility of 0.02 cm2/Vs and electron carrier mobility of 0.004 cm2/Vs, respectively using Si/SiO2 substrate. By keeping the central D-A-D segment and just by tuning end capping groups gives both p- and n-channel organic semiconductors which can be prepared in a single step using straightforward synthesis
Transport in -Sexithiophene Films
The field-effect mobility of hole polarons in -sexithiophene,
measured in thin film transistors, was shown to be well fitted by Holstein's
small polaron theory. Unfortunately, Holstein's formulation is based on an
integral that does not converge. We show that the data are well fitted by a
theory of polaron transport that was successful in accounting for mobility in
molecular crystals of naphthalene.Comment: 10 pages, RevTex, one PostScript file aviable upon reques
- …