1,066 research outputs found

    Object Tracking in Vary Lighting Conditions for Fog based Intelligent Surveillance of Public Spaces

    Get PDF
    With rapid development of computer vision and artificial intelligence, cities are becoming more and more intelligent. Recently, since intelligent surveillance was applied in all kind of smart city services, object tracking attracted more attention. However, two serious problems blocked development of visual tracking in real applications. The first problem is its lower performance under intense illumination variation while the second issue is its slow speed. This paper addressed these two problems by proposing a correlation filter based tracker. Fog computing platform was deployed to accelerate the proposed tracking approach. The tracker was constructed by multiple positions' detections and alternate templates (MPAT). The detection position was repositioned according to the estimated speed of target by optical flow method, and the alternate template was stored with a template update mechanism, which were all computed at the edge. Experimental results on large-scale public benchmark datasets showed the effectiveness of the proposed method in comparison with state-of-the-art methods

    Waveform Design for Maximum Pass-Band Energy

    Get PDF
    One way to maximize the sensitivity of an ultrasonic inspection is by establishing the pulser output voltage waveform to provide the maximum possible fraction of its energy in the pass-band of the piezoelectric transducer. An analytical study is reported that is backed up with experimental verification. Two pulser constraints are analyzed in this study. The first constraint is to study the common and easily generated waveform shapes for which each waveform has unit energy and compare to the optimum waveform shape with unit energy that is determined analytically. The second constraint is to repeat the first analysis with waveforms having unit amplitude rather than unit energy. The analysis for the first constraint shows that the numerically intractable problem of summing a very large number of Fourier coefficients can be replaced by a mathematically equivalent evaluation of the pass-band energy which requires only the integration of smooth functions. This alternative formulation also leads to the result that the optimized waveform is the eigenfunction of a particular integral operator corresponding to the largest eigenvalue. The eigenvalue itself gives the maximum attainable passband energy. The optimized waveform is compared with sine waves, rectangular waves, trapezoidal waves, triangle waves and exponential spikes for 1/2, 1 and 3/2 cycle durations. The analysis for the second constraint shows that the unit amplitude is in the form of an inequality which is outside the realm of the classical calculus of variations. An exact characterization of the optimized waveform was not found but numerical integration techniques were employed to determine the pass-band energies for the waveforms considered under the first constraint. Finally, a breadboard pulser model is constructed and extensive comparisons of the various waveshapes, sensitivity studies, spectral distributions and experimental verification are made for each constraint

    Development of IoT Smart Greenhouse System for Hydroponic Gardens

    Full text link
    This study focused on the development of a smart greenhouse system for hydroponic gardens with the adaptation of the Internet of Things and monitored through mobile as one of the solutions towards the negative effects of the worlds booming population, never ending - shrinking of arable lands, and the effect of climate change drastically in our environments. To achieve the goal of the study, the researchers created an actual hydroponic greenhouse system with completely developing plants, and automation in examining and monitoring the water pH level, light, water, and greenhouse temperature, as well as humidity which is linked to ThingSpeak. The developed SMART Greenhouse monitoring system was tested and evaluated to confirm its reliability, functions, and usability under ISO 9126 evaluation criteria. The respondents who include casual plant owners and experts in hydroponic gardening able to test and evaluate the prototype, and the mobile application to monitor the parameters with the results of 7.77 for pH level, 83 for light, 27.94 deg C for water temperature, 27 deg C for greenhouse temperature, and 75% for humidity with a descriptive result in both software and hardware as Very Good with a mean average of 4.06 which means that the developed technology is useful and recommended. The SMART Greenhouse System for Hydroponic Garden is used as an alternative tool, solution, and innovation technique towards food shortages due to climate change, land shortages, and low farming environments. The proponents highly suggest the use of solar energy for the pump power, prototype wiring should be improved, the usage of a high-end model of Arduino to address more sensors and devices for a larger arsenal of data collected, enclosures of the device to ensure safety, and mobile application updates such as bug fixes and have an e-manual of the whole systems

    Cues and knowledge structures used by mental-health professionals when making risk assessments

    Get PDF
    Background: Research into mental-health risks has tended to focus on epidemiological approaches and to consider pieces of evidence in isolation. Less is known about the particular factors and their patterns of occurrence that influence clinicians’ risk judgements in practice. Aims: To identify the cues used by clinicians to make risk judgements and to explore how these combine within clinicians’ psychological representations of suicide, self-harm, self-neglect, and harm to others. Method: Content analysis was applied to semi-structured interviews conducted with 46 practitioners from various mental-health disciplines, using mind maps to represent the hierarchical relationships of data and concepts. Results: Strong consensus between experts meant their knowledge could be integrated into a single hierarchical structure for each risk. This revealed contrasting emphases between data and concepts underpinning risks, including: reflection and forethought for suicide; motivation for self-harm; situation and context for harm to others; and current presentation for self-neglect. Conclusions: Analysis of experts’ risk-assessment knowledge identified influential cues and their relationships to risks. It can inform development of valid risk-screening decision support systems that combine actuarial evidence with clinical expertise

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. V. Rising X-ray Emission from an Off-Axis Jet

    Full text link
    We report the discovery of rising X-ray emission from the binary neutron star (BNS) merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave source. Observations acquired with the Chandra X-ray Observatory (CXO) at t~2.3 days post merger reveal no significant emission, with L_x<=3.2x10^38 erg/s (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching L_x\sim 9x10^39 erg/s at ~15.1 days post merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broad-band X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy E_k~10^49-10^50 erg, viewed off-axis with theta_obs~ 20-40 deg. Our models favor a circumbinary density n~ 0.0001-0.01 cm-3, depending on the value of the microphysical parameter epsilon_B=10^{-4}-10^{-2}. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳100t\gtrsim 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on theta_obs are testable with gravitational wave information on GW170817 from Advanced LIGO/Virgo on the binary inclination.Comment: 7 Pages, 4 Figures, ApJL, In Press. Keywords: GW170817, LV

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Full text link
    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳10\gtrsim 10 Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M⊙_{\odot} yr−1^{-1}, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of 11.2−1.4+0.711.2^{+0.7}_{-1.4} Gyr, with a 90% confidence range of 6.8−13.66.8-13.6 Gyr. This in turn indicates an initial binary separation of ≈4.5\approx 4.5 R⊙_{\odot}, comparable to the inferred values for Galactic BNS systems. We also use new and archival HubbleHubble SpaceSpace TelescopeTelescope images to measure a projected offset of the optical counterpart of 2.12.1 kpc (0.64rer_{e}) from the center of NGC 4993 and to place a limit of Mr≳−7.2M_{r} \gtrsim -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ∌200\sim 200 km s−1^{-1}. Future GW−-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of rr-process enrichment in the Universe.Comment: 9 Pages, 3 Figures, 2 Tables, ApJL, In Press. Keywords: GW170817, LV

    Design implications for task-specific search utilities for retrieval and re-engineering of code

    Get PDF
    The importance of information retrieval systems is unquestionable in the modern society and both individuals as well as enterprises recognise the benefits of being able to find information effectively. Current code-focused information retrieval systems such as Google Code Search, Codeplex or Koders produce results based on specific keywords. However, these systems do not take into account developers’ context such as development language, technology framework, goal of the project, project complexity and developer’s domain expertise. They also impose additional cognitive burden on users in switching between different interfaces and clicking through to find the relevant code. Hence, they are not used by software developers. In this paper, we discuss how software engineers interact with information and general-purpose information retrieval systems (e.g. Google, Yahoo!) and investigate to what extent domain-specific search and recommendation utilities can be developed in order to support their work-related activities. In order to investigate this, we conducted a user study and found that software engineers followed many identifiable and repeatable work tasks and behaviours. These behaviours can be used to develop implicit relevance feedback-based systems based on the observed retention actions. Moreover, we discuss the implications for the development of task-specific search and collaborative recommendation utilities embedded with the Google standard search engine and Microsoft IntelliSense for retrieval and re-engineering of code. Based on implicit relevance feedback, we have implemented a prototype of the proposed collaborative recommendation system, which was evaluated in a controlled environment simulating the real-world situation of professional software engineers. The evaluation has achieved promising initial results on the precision and recall performance of the system

    Some Aspects of Cost/ Benefit Analysis for In-Service Inspection of PWR Steam Generators

    Get PDF
    This report discusses a number of aspects of cost/benefit (C/B) analysis for in-service inspection (lSI} of pressurized water reactor (PWR) steam generators (SGs) and identifies several problem areas that must be addressed prior to a full C/B analysis capability. Following a brief review of the impact of SG problems on the productivity of PWR units and of the scope and variability of SG problems among U.S. PWRs, various occupational implications of SG lSI are considered, namely manpower, time, and rad exposure. The opportunities provided by refueling outages in respect to lSI frequency and work time windows are reviewed. Indices for characterizing the nondestructive testing {NDT) information, rad exposure, impact,andmanpowerandtimeattributesofsingleISIsandaseriesofISIsoveranarbitraryevaluationperiodarepresentedandcalculatedforanumberoflSIcasesusingSGparametersforthreetypicalPWRunits.Acomparisonofthe impact, and manpower and time attributes of single ISIs and a series of ISIs over an arbitrary evaluation period are presented and calculated for a number of lSI cases using SG parameters for three typical PWR units. A comparison of the impact of unscheduled outages attributable to SG problems with the costofambitiouslSIstrategiesindicatesthatthe cost of ambitious lSI strategies indicates that the cost is virtually negligible for well-planned ISis. Considering the ALARA constraint on occupational rad exposure, the skilled manpower pool for NDT work appears to be the principal factor limiting lSI scope and frequency. Analysis of the manpower and time requirements for inspection of a 40-unit PWR population indicates, however, that an lSI strategy embodying two campaigns per year and a total population inspection within a 2-year interval is not far beyond current capabilities
    • 

    corecore