398 research outputs found

    Biconed graphs, edge-rooted forests, and h-vectors of matroid complexes

    Full text link
    A well-known conjecture of Richard Stanley posits that the hh-vector of the independence complex of a matroid is a pure O{\mathcal O}-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the hh-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `edge-rooted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the M\"obius coinvariant (the last nonzero entry of the hh-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially edge-rooted forests gives rise to a pure multicomplex whose face count recovers the hh-vector, establishing Stanley's conjecture for this class of matroids.Comment: 15 pages, 3 figures; V2: added omitted author to metadat

    Homomorphism complexes, reconfiguration, and homotopy for directed graphs

    Full text link
    The neighborhood complex of a graph was introduced by Lov\'asz to provide topological lower bounds on chromatic number. More general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes' are also related to mixings of graph colorings and other reconfiguration problems, as well as a notion of discrete homotopy for graphs. Here we initiate the detailed study of Hom complexes for directed graphs (digraphs). For any pair of digraphs graphs GG and HH, we consider the polyhedral complex Hom(G,H)\text{Hom}(G,H) that parametrizes the directed graph homomorphisms f:GHf: G \rightarrow H. Hom complexes of digraphs have applications in the study of chains in graded posets and cellular resolutions of monomial ideals. We study examples of directed Hom complexes and relate their topological properties to certain graph operations including products, adjunctions, and foldings. We introduce a notion of a neighborhood complex for a digraph and prove that its homotopy type is recovered as the Hom complex of homomorphisms from a directed edge. We establish a number of results regarding the topology of directed neighborhood complexes, including the dependence on directed bipartite subgraphs, a digraph version of the Mycielski construction, as well as vanishing theorems for higher homology. The Hom complexes of digraphs provide a natural framework for reconfiguration of homomorphisms of digraphs. Inspired by notions of directed graph colorings we study the connectivity of Hom(G,Tn)\text{Hom}(G,T_n) for TnT_n a tournament. Finally, we use paths in the internal hom objects of digraphs to define various notions of homotopy, and discuss connections to the topology of Hom complexes.Comment: 34 pages, 10 figures; V2: some changes in notation, clarified statements and proofs, other corrections and minor revisions incorporating comments from referee

    Random subcomplexes and Betti numbers of random edge ideals

    Full text link
    We study homological properties of random quadratic monomial ideals in a polynomial ring R=K[x1,xn]R = {\mathbb K}[x_1, \dots x_n], utilizing methods from the Erd\"{o}s-R\'{e}nyi model of random graphs. Here for a graph GG(n,p)G \sim G(n, p) we consider the `coedge' ideal IGI_G corresponding to the missing edges of GG, and study Betti numbers of R/IGR/I_G as nn tends to infinity. Our main results involve setting the edge probability p=p(n)p = p(n) so that asymptotically almost surely the Krull dimension of R/IGR/I_G is fixed. Under these conditions we establish various properties regarding the Betti table of R/IGR/I_G, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex kk-connectivity that may be of independent interest.Comment: 29 pages, 2 figures; V2: fixed typos and other minor revisions; V3: more corrections and minor revisions, incorporating comments from refere
    corecore