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An arrangement of finitely many tropical hyperplanes in the
tropical torus T

d−1 leads to a notion of ‘type’ data for points in
T

d−1, with the underlying unlabeled arrangement giving rise to
‘coarse type’. It is shown that the decomposition of T

d−1 induced
by types gives rise to minimal cocellular resolutions of certain
associated monomial ideals. Via the Cayley trick from geometric
combinatorics this also yields cellular resolutions supported on
mixed subdivisions of dilated simplices, extending previously
known constructions. Moreover, the methods developed lead to an
algebraic algorithm for computing the facial structure of arbitrary
tropical complexes from point data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The study of convexity over the tropical semi-ring has been an area of active research in recent
years. Fundamental properties of tropical convexity, in particular from a combinatorial perspective,
were established by Develin and Sturmfels in [6]. There the notion of a tropical polytope was defined
as the tropical convex hull of a finite set of points in the tropical torus Td−1. Fixing the set of gener-
ating points yields a decomposition of the tropical polytope called the tropical complex, and in [6] it
was shown that the collection of such complexes are in bijection with the regular subdivisions of a
product of simplices.
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A tropical complex can be realized as the subcomplex of bounded cells of the polyhedral complex
arising from an arrangement of tropical hyperplanes, and it is this perspective that we adopt in this
paper. We study combinatorial properties of arrangements of tropical hyperplanes, and in particular
their relation to algebraic properties of associated monomial ideals. A tropical hyperplane in Td−1 is
defined as the locus of ‘tropical vanishing’ of a linear form (with full support), and can be regarded as
a fan polar to a (d −1)-dimensional simplex. In this way each tropical hyperplane divides the ambient
space Td−1 into d sectors. Given an arrangement A of tropical hyperplanes and a point p ∈ Td−1, one
can record the position of p with respect to each sector of each hyperplane. This tropical analog of
the covector data of an oriented matroid is called the type data, and the combinatorial approach to
tropical convexity taken in [6] is based on this concept. Here we consider a coarsening of the type
data (which we call coarse type) arising from an arrangement A of tropical hyperplanes, amounting
to neglecting the labels on the individual hyperplanes.

The connection between tropical polytopes/complexes and resolutions of monomial ideals was first
exploited by Block and Yu in [4]. There the authors associate a monomial ideal to a tropical polytope
with generators in general position, and use algebraic properties of its minimal resolution to deter-
mine the facial structure of the bounded subcomplex. The primary tool employed in this context is
that of a cellular resolution of a monomial ideal. The ideals from [4] are squarefree monomials ideals
generated by the cotype data, i.e. the complements of the tropical covectors, arising from the associ-
ated arrangement of hyperplanes, and hence can be seen as a tropical analog of the (oriented) matroid
ideals studied by Novik, Postnikov and Sturmfels in [15].

In this paper we study the polyhedral complex CA and its bounded subcomplex BA induced by
the type data of an arrangement A of n hyperplanes in Td−1. Both complexes are naturally labeled
by fine and coarse type and cotype data, and we show how the resulting labeled complexes support
minimal (co)cellular resolutions of associated monomial ideals. We pay special attention to labels
given by coarse type. For instance, we show that CA supports a minimal cocellular resolution of the
ideal It(A) generated by monomials corresponding to the set of all coarse types. The proof involves
a consideration of the topology of certain subsets of CA as well as the combinatorial properties of
the coarse type labelings. When the arrangement A is sufficiently generic we show that the resulting
ideal is always given by 〈x1, . . . , xd〉n , the n-th power of the maximal homogeneous ideal; in general,
It(A) is some Artinian subideal. Our results in this area are all independent of the characteristic of the
coefficient field.

Via the connection to products of simplices and the Cayley trick we interpret these results in the
context of mixed subdivisions of dilated simplices. In particular, we obtain a minimal cellular resolu-
tion of It(A) supported on a subcomplex of the dilated simplex n�d−1. One other direct consequence
is that any regular fine mixed subdivision of n�d−1 supports a minimal resolution of 〈x1, . . . , xd〉n .
This extends a result of Sinefakopoulos from [18] where a particular subdivision is considered (al-
though much less explicitly), and also complements a construction of Engström and the first author
from [7] where such complexes are applied to resolutions of hypergraph edge ideals. The duality be-
tween tropical complexes and mixed subdivisions of dilated simplices was established in [6], and we
show how this extends to the algebraic level in terms of Alexander duality of our resolutions of the
coarse type and cotype ideals.

Finally, we show how these algebraic results lead to observations regarding the combinatorics of
tropical polytopes/complexes and mixed subdivisions of dilated simplices. We obtain a formula for the
f -vector of the bounded subcomplex of an arbitrary tropical hyperplane arrangement in terms of the
Betti numbers of the associated coarse type ideal. The uniqueness of minimal resolutions also implies
that for any sufficiently generic arrangement A, the multiset of coarse types is independent of the
arrangement. Furthermore, we present an algorithm for determining the incidence face structure of
a tropical complex from the coordinates of an arbitrary set of vertices, utilizing the fact that such
a complex supports a minimal resolution of the square-free monomial cotype ideal. This approach
was first introduced by Block and Yu in [4] for the case of sufficiently generic arrangements, and we
extend the algorithm to the general case.

The rest of the paper is organized as follows. In Section 2 we review the basic notions of trop-
ical convexity including tropical hyperplanes and type data, and discuss the polytopal complex that
arises from an arrangement of tropical hyperplanes. We introduce the notion of coarse type and estab-
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lish some of the basic properties that will be used later in the paper. In Section 3 we introduce the
monomial ideals that arise from an arrangement of hyperplanes and show that the polytopal com-
plexes labeled by fine and coarse (co)type support cocellular (and cellular) resolutions. In Section 4
we interpret our results in terms of mixed subdivisions of dilated simplices. We briefly discuss the
staircase triangulation and recover a result of Sinefakopoulos [18]. In Section 5 we show our results
give rise to certain consequences for the combinatorics (e.g., the f -vector) of the bounded subcom-
plexes of tropical hyperplane arrangements, and also describe an algorithm for determining the entire
face poset from the coordinates of the arrangement. This strengthens a result from [4]. Finally, we
end in Section 6 with some concluding remarks and open questions.

We are grateful to Kirsten Schmitz for very careful proof reading, and we thank the referees for
their comments.

2. Tropical convexity and coarse types

In order to fix our notation we begin in this section with a brief review of the foundations of tropical
convexity as layed out by Develin and Sturmfels in [6]. We then define ‘coarse types’ and establish
some combinatorial and topological results regarding the type decomposition of the tropical torus
induced by a finite set of points. While some of these observations may be worthwhile in their own
right, their main interest for us will be their applications to subsequent constructions of (co)cellular
resolutions.

2.1. Tropical convexity and tropical hyperplane arrangements

Tropical convexity is concerned with linear algebra over the tropical semi-ring (R,⊕,�), where

x ⊕ y := min(x, y) and x � y := x + y.

We will sometimes replace the operation min with max, and although the two resulting semi-rings
are isomorphic via −max(x, y) = min(−x,−y), it will be useful for us to consider both structures on
the set R simultaneously. To avoid confusion we will therefore use the terms min-tropical semi-ring
and max-tropical semi-ring, respectively. Componentwise tropical addition and tropical scalar multi-
plication turn Rd into a semi-module. The tropical torus Td−1 is the quotient of Euclidean space Rd

by the linear subspace R1, where 1 ∈ Rd is the all-ones vector. By interpreting this quotient in the
category of topological spaces, Td−1 inherits a natural topology which is homeomorphic to the usual
topology on Rd−1. A set S ⊂ Td−1 is tropically convex if it contains (λ � x) ⊕ (μ � y) for all x, y ∈ S
and λ,μ ∈ R. For an arbitrary set S ⊂ Td−1 the tropical convex hull tconv(S) is defined as the smallest
tropically convex set containing S . If the set S is finite, then tconv(S) is called a tropical polytope. In
this paper, tropical convexity and related notions will be studied with respect to both min and max,
and hence we will also talk about max-tropically convex sets and the like.

The tropical hyperplane with apex −a ∈ Td−1 is the set

H(−a) := {
p ∈ Td−1: (a1 � p1) ⊕ (a2 � p2) ⊕ · · · ⊕ (ad � pd) is attained at least twice

}
.

That is, a tropical hyperplane is the tropical vanishing locus of a polynomial homogeneous of degree 1
with real coefficients. We write Hmin(−a) and Hmax(−a) to explicitly distinguish between the min-
and max-versions. Any two min-tropical (respectively max-tropical) hyperplanes are related by an
ordinary translation, and hence a tropical hyperplane is completely determined by its apex. The com-
plement of any tropical hyperplane in Td−1 consists of precisely d connected components, its open
sectors. Each open sector is convex, in both the tropical and ordinary sense. The k-th (closed) sector of
the max-tropical hyperplane with apex a is the set

Smax
k (a) := {

p ∈ Td−1: ak − pk � ai − pi for all i ∈ [d]}.
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Similarly we have

Smin
k (a) := {

p ∈ Td−1: ak − pk � ai − pi for all i ∈ [d]}
for the min-version. Notice that x ∈ Smax

k (y) if and only if y ∈ Smin
k (x); this fact can be read as a kind

of duality. Each closed sector is the topological closure of an open sector. Again the closed sectors are
tropically and ordinarily convex. A sequence of points V = (v1, v2, . . . , vn) in Td−1 gives rise to the
arrangement

A(V ) := (
Hmax(v1), Hmax(v2), . . . , Hmax(vn)

)
of n labeled max-tropical hyperplanes. The position of points in Td−1 relative to each hyperplane in
the arrangement furnishes combinatorial data and leads to the following definition.

Definition 2.1 (Fine (co)type). Let A = A(V ) be the arrangement of max-tropical hyperplanes given
by V = (v1, v2, . . . , vn) in Td−1. The fine type of a point p ∈ Td−1 with respect to A is the table
TA(p) ∈ {0,1}n×d with

TA(p)ik = 1 if and only if p ∈ Smax
k (vi)

for i ∈ [n] and k ∈ [d]. The fine cotype TA(p) ∈ {0,1}n×d is defined by TA(p)ik = 1 − TA(p)ik .

Let us now fix an arrangement A = A(V ) in Td−1. We write T (p) instead of TA(p) when no
confusion arises. For a fixed type T = T (p), the points in Td−1 with fixed type T (p) = T form a
relatively open subset of Td−1 = Rd−1, which is convex in both the tropical and ordinary sense. Their
closures give a polyhedral subdivision CA of the tropical torus Td−1. The bounded closed cells are the
polytropes studied in [10]; they form the bounded subcomplex B = BA . The collection of types with the
componentwise order is anti-isomorphic to the face lattice of CA , that is, TA(D) � TA(C) whenever
C ⊆ D are closed cells of CA . Following Ardila and Develin [1], a fine type should be thought of as the
tropical equivalent of a covector in the setting of tropical oriented matroids, with the cells of maximal
dimension playing the role of the topes. The following result highlights the relation of min-tropical
polytopes and max-tropical hyperplane arrangements.

Theorem 2.2. (See [6, Theorem 15 and Proposition 16].) The min-tropical polytope tconv(V ) is the union of
cells in the bounded subcomplex BA of the cell decomposition of Td−1 induced by the max-tropical hyperplane
arrangement A=A(V ).

The polytopal complex BA induced by types is a subdivision of the tropical polytope tconv(P )

called the tropical complex generated by V . The points V are in tropically general position if the com-
binatorial type of CA (or equivalently BA) is invariant under small perturbations.

At this point we introduce our running example, borrowed from [4, Example 10].

Example 2.3. The points v1 = (0,3,6), v2 = (0,5,2), v3 = (0,0,1), and v4 = (1,5,0) give rise to the
max-tropical hyperplane arrangement shown in Fig. 1. It decomposes the tropical torus T2 into 15
two-dimensional cells, three of which are bounded. Note that there is precisely one bounded cell of
dimension one (incident with the 0-cell v1) which is maximal with respect to inclusion. This shows
that the polytopal complex BA need not be pure. Moreover, one can check that the four points are in
general position.
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Fig. 1. Coarsely labeled type decomposition of T2 induced by four max-tropical lines. Bounded cells are shaded.

2.2. Coarse types

As we have seen, the fine type records the position of a point relative to a labeled tropical hyper-
plane arrangement. Neglecting the labels on the hyperplanes leads to the following coarsening of the
type information.

Definition 2.4 (Coarse (co)type). Let A = A(V ) be an arrangement of n max-tropical hyperplanes in
Td−1. The coarse type of a point p ∈ Td−1 with respect to A is given by tA(p) = (t1, t2, . . . , td) ∈ Nd

with

tk =
n∑

i=1

TA(p)ik

for k ∈ [d]. The coarse cotype tA(p) ∈ Nd is given by tA(p)k = n − tA(p)k for k = 1, . . . ,d.

The coarse type entry t(p)k records for how many hyperplanes in A the point p lies in the k-th
closed sector. Again we will write t(p) when no confusion can arise. The map which assigns a vector
Nd to each cell of constant coarse type is also denoted by t.

Let us give an alternative interpretation of coarse types. The tropical hyperplane arrangement A
in Td−1 is the tropicalization of a product of linear forms h = h1 · h2 · · ·hn over the field of Puiseux
series [8, Section 2]. The linear forms can be taken to be hi = z−vi1 x1 + z−vi2 x2 + · · · + z−vid xd ∈
C{{z}}[x1, . . . , xd] but there is no canonical choice. As stated, this only works for tropical hyperplanes
with rational apices. For the general case, it would be necessary to work over a field of generalized
Puiseux series [12].

According to [8, Theorem 2.1.1], the tropical hypersurface trop(h) associated to the Laurent poly-
nomial h = ∑

α γαxα is the orthogonal projection of the codimension-2-skeleton of the unbounded
ordinary polyhedron

PA = {
(x, s) ∈Rd ×R: s � val(γα) + 〈x,α〉 for all α with γα 
= 0

}
and the facets of PA correspond to the monomials of h.
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Proposition 2.5. Let p ∈ Td−1 \ A be a generic point. Then its coarse type tA(p) is the exponent of the
monomial in h which defines the unique facet of PA above p.

Recall that a composition of n into d parts is a sequence (t1, t2, . . . , td) ∈ Nd of nonnegative integers
such that t1 + t2 +· · ·+ td = n. Such compositions bijectively correspond to monomials of total degree
n in d variables, of which there are exactly

(n+d−1
n

) = (n+d−1
d−1

)
.

Remark 2.6. From Proposition 4.2 and the interpretation of tropical complexes in terms of mixed
subdivisions, we see the map t from the set of cells in CA of maximal dimension d − 1 to the set of
compositions of n into d parts is injective. Moreover, if the points V are sufficiently generic then the
map t is bijective.

Corollary 2.7. For an arrangement A = A(V ), the number of cells in CA of maximal dimension d − 1 does
not exceed

(n+d−1
n

)
. If the points V are sufficiently generic then this bound is attained.

Note that the injectivity of t does not extend to the lower-dimensional cells, even in the suffi-
ciently generic case. For instance, in the arrangement considered in Examples 2.3 the points (0,2,3)

and (0,3,5) lie in the relative interiors of two distinct 1-cells; yet they share the same coarse type
(1,1,3). However coarse types are locally distinct in the following sense.

Proposition 2.8. Let C and D be two distinct cells in CA . If C is contained in the closure of D then C and D
have distinct coarse types.

Proof. By [6, Corollary 13] we have TA(D) � TA(C) and TA(D) 
= TA(C). This in particular implies
that C is contained in more closed sectors with respect to A and hence C and D cannot have the
same coarse type. �

The boundedness of a cell in CA can also be read off from its coarse type.

Proposition 2.9. (See [6, Corollary 12].) Let A=A(V ) be a tropical hyperplane arrangement and let C ∈ CA
be a cell in the induced decomposition. Then C is bounded if and only if t(C)i > 0 for all i = 1, . . . ,n.

Proof. We noted previously that for two points p,q ∈ Td−1 we have p ∈ Smax
k (q) if and only if q ∈

Smin
k (p). Now, the point p is contained in an unbounded cell of CA if there is a k such that Smin

k (p)∩
V = ∅. This is the case if and only if tA(p)k = 0, that is, there is no hyperplane Hi for which p is
contained in the k-th sector. �
2.3. Topology of types

We next investigate topological properties of certain subsets of Td−1 induced by a tropical hy-
perplane arrangement. The motivation for such a study comes from our applications to (co)cellular
resolutions as described in Section 3. However, since the methods used to establish the desired prop-
erties are based on notions from (coarse) tropical convexity, we include them here. In particular, we
show that certain subsets of Td−1 are contractible by proving that they are, in fact, tropically con-
vex. Let us emphasize that none of the results that follow require the hyperplanes to be in general
position.

We begin with the following observation, which was established in [6, Theorem 2].

Proposition 2.10. A tropically convex set is contractible.

Recall that for two types T , T ′ ∈ {0,1}n×d we write T � T ′ for the componentwise induced partial
order. We let min(T , T ′) and max(T , T ′) denote the tables with entries given by the componentwise
minimum and maximum, respectively.
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Proposition 2.11. Let A=A(V ) be a max-tropical hyperplane arrangement in Td−1 and p,q ∈ Td−1 . Then

min
(
TA(p), TA(q)

)
� TA(r)� max

(
TA(p), TA(q)

)
for every point r ∈ tconvmax{p,q} on the max-tropical line segment between p and q.

Proof. Let r = (λ � p) ⊕ (μ � q) = max{λ1 + p,μ1 + q} for λ,μ ∈ R and let k ∈ [d] be arbitrary but
fixed. We treat each inequality separately but in each case we assume without loss of generality that
rk = λ + pk �μ + qk .

For the first inequality suppose that both p and q are in the k-th sector of some hyperplane H(u),
so that pk − pi � uk − ui and qk − qi � uk − ui for all i ∈ [d]. Now, for j ∈ [d] we distinguish two
cases. If r j = λ + p j � μ + q j , then r j − rk = p j − pk , so that r is in the k-th sector of H(u). If
r j = μ + q j � λ + p j , then rk − r j �μ + qk − r j = μ + qk − (μ + q j) = qk − q j . Hence rk − r j � uk − u j

for all j ∈ [d], and again we conclude that r is in the k-th sector of H(u).
For the second inequality suppose that r is contained in the k-th sector of some hyperplane H(u),

so that rk − r j � uk − u j for all j ∈ [d]. Since rk = λ + pk �μ + qk we have that λ + pk � uk − u j + r j

for all j ∈ [d]. Also, r j � λ + p j and hence λ + pk � uk − u j + λ + p j . We conclude pk − p j � uk − u j

for all j ∈ [d]. Hence p is in the k-th sector of H(u), as desired. �
From the definition of coarse types we obtain the following statement.

Corollary 2.12. Let A=A(V ) be a max-tropical hyperplane arrangement in Td−1 and p,q ∈ Td−1 . Then

tA(r) � max
(
tA(p), tA(q)

)
for r ∈ tconvmax{p,q}.

The following observation on the topology of regions of bounded fine and coarse (co)type will be
the main tool for establishing results regarding (co)cellular resolutions in Section 3.

Corollary 2.13. Let A = A(V ) be an arrangement of n max-tropical hyperplanes in Td−1 , and let
B ∈ {0,1}n×d and b ∈ Nd. With labels determined by fine (respectively, coarse) type the following subsets
of Td−1 are max-tropically convex and hence contractible:

(CA, T )�B := {
p ∈ Td−1: TA(p) � B

} =
⋃{

C ∈ CA: TA(C) � B
}
,

(CA, t)�b := {
p ∈ Td−1: tA(p) � b

} =
⋃{

C ∈ CA: tA(C) � b
}
.

Similarly, with labels determined by fine (respectively, coarse) cotype the following subsets of Td−1 are min-
tropically convex and hence contractible:

(CA, T )�B := {
p ∈ Td−1: TA(p) � B

} =
⋃{

C ∈ CA: TA(C) � B
}
,

(CA, t)�b := {
p ∈ Td−1: tA(p) � b

} =
⋃{

C ∈ CA: tA(C) � b
}
.

As a consequence, the two subsets of Td−1 obtained by replacing the complex CA in the above pair of
formulas with the bounded complex BA are min-tropically convex and hence contractible.
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Fig. 2. Coarse down-set (CA)�(2,2,2) for the arrangement A from Example 2.3. This is an open subset of T2.

Proof. The max-tropical convexity of (CA, T )�B follows from Proposition 2.11, and Corollary 2.12
establishes the same property for the coarse variant (CA, t)�b .

If r is a point in the min-tropical line segment between p and q a reasoning similar to the
proof of Proposition 2.11 shows that TA(r) � min(TA(p), TA(q)). Passing to complements yields
TA(r) � max(TA(p), TA(q)) and thus tA(r) � max(tA(p), tA(q)) for the coarse types. We conclude
that the sets (CA, T )�B and (CA, t)�b are min-tropically convex. For the last claim, we note that by
Proposition 2.9,

(BA, t)�b = (CA, t)�b̂,

where b̂i = min{bi,n − 1}. Hence both (BA, T )�B and (BA, t)�b are intersections of min-tropically
convex sets. Such sets are contractible by Proposition 2.10. �

Note that the down-sets of bounded (coarse) type need not be closed or bounded. In Fig. 2 we
illustrate an example of a coarse down-set from our running example.

3. Resolutions

In this section we show how the polyhedral complexes CA and BA arising from a tropical hyper-
plane arrangement A = A(V ) support resolutions for associated monomial ideals. We begin with a
few definitions.

Definition 3.1. Let A = A(V ) be an arrangement of n tropical hyperplanes in Td−1. The fine type and
fine cotype ideal associated to A are the squarefree monomial ideals

IT (A) = 〈
xT (p): p ∈ Td−1〉 ⊂ F[x11, x12, . . . , xnd],

IT (A) = 〈
xT (p): p ∈ Td−1〉 ⊂ F[x11, x12, . . . , xnd]
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where xT (p) = ∏{xij: T (p)i j = 1}. Analogously, the coarse type and coarse cotype ideal associated to A
are given by

It(A) = 〈
xt(p): p ∈ Td−1〉 ⊂ F[x1, x2, . . . , xd],

It(A) = 〈
xt(p): p ∈ Td−1〉 ⊂ F[x1, x2, . . . , xd],

where xt(p) = xt1
1 xt2

2 · · · xtd
d with t(p) = (t1, t2, . . . , td).

An analogous construction of such ideals for classical hyperplane arrangements appears in Novik et
al. [15] in the form of oriented matroid ideals, where monomial generators are given by (complements
of) covector data.

3.1. Cellular and cocellular resolutions

The relation between the decompositions of Td−1 and the various ideals of Definition 3.1 is given
via (co)cellular resolutions. Although cellular resolutions are by now a standard tool in (combinatorial)
commutative algebra, cocellular resolutions are less frequently used and so we take the opportunity to
discuss them here in some detail. Our presentation is based on the book [14] of Miller and Sturmfels.

For a fixed field F we let S = F[x1, . . . , xm] be the polynomial ring equipped with the Zm-grading
given by deg xa = a ∈ Zm . A free Zm-graded resolution F• of a Zm-graded module M is a complex of
Zm-graded S-modules

F•: · · · φk+1−→ Fk
φk−→ · · · φ2−→ F1

φ1−→ F0 → 0

where Fi ∼= ⊕
a∈Zm S(−a)βi,a are free Zm-graded S-modules, the maps φi are homogeneous, and such

that the complex is exact except for cokerφ1 ∼= M . The resolution is called minimal exactly when
βi,a = dimF TorS

i (S/I,F)a and the numbers βi,a are called the fine graded Betti numbers.
Certain Zm-graded resolutions have a particularly efficient encoding as cellular and cocellular res-

olutions, introduced in [2] and [13], respectively. Let P be an oriented polyhedral complex and let
(aH )H∈P ∈ Zm be a labeling of the cells of P such that

aH = max{aG : for G ⊂ H a face}.

The labeled complex (P,a) gives rise to a complex of free Zm-graded S-modules in the fol-
lowing way: Let (C•, ∂•) be the cellular chain complex for P and for two cells G, H ∈ P with
dim H = dim G + 1 denote by ε(H, G) ∈ {0,±1} the coefficient of G in the cellular boundary of H .
Now define free modules

Fi :=
⊕

H∈P,dim H=i+1

S(−aH ).

The differentials φi : Fi → Fi−1 are given on generators by

φi(eH ) :=
∑

dim G=dim H−1

ε(H, G)xaH −aG eG .

It can be verified that this defines a complex FP• . For b ∈ Zm denote by P�b the subcomplex given
by all cells H ∈P with aH � b, that is (aH )i � bi for all i ∈ [m].
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Lemma 3.2. (See [14, Proposition 4.5].) Let FP• be the complex obtained from the labeled polyhedral complex
(P,a). If for every b ∈ Zn the subcomplex P�b is acyclic over F, then FP• resolves the quotient of S by the
ideal 〈xav : v ∈ P vertex〉. Furthermore, the resolution is minimal if aH 
= aG for any two faces G ⊂ H with
dim H = dim G + 1.

The complex FP• is called a cellular resolution if it meets the criterion above, and we say that the
polyhedral complex P supports the resolution. If the labeling is such that

aH = max{aG : for G ⊃ H a face}

then P is said to be colabeled and gives rise to a complex utilizing the cellular cochain complex of P .
For this, let F•

P denote the complex with free S-modules F i := Fi as defined above and differentials
φi : F i−1 → F i with

φi(eH ) :=
∑

dim G=dim H+1

δ(H, G)xaH −aG eG

where δ(H, G) records the corresponding coefficient in the coboundary map for P . If the complex is
acyclic, the resulting resolution is called cocellular. For b ∈ Zm the collection P�b of relatively open
cells H with aH � b is not a subcomplex. However, as a topological space it is the union of the
relatively open stars of cells G for which aG � b is minimal and the cochain complex of the nerve
is isomorphic to the degree b component of F•

P . This yields an analogous criterion regarding the
exactness of F•

P . The proof of Lemma 3.2 given in [14] essentially establishes the following criterion.

Lemma 3.3. If P�b is acyclic over F for every b ∈ Zn then F•
P resolves S/I where I = 〈xaH : H ∈ P

maximal cell 〉. The resolution is minimal if aH 
= aG for any two faces G ⊂ H with dim H = dim G + 1.

3.2. Resolutions from the arrangement

As usual let A = A(V ) be a max-tropical hyperplane arrangement in Td−1 and let CA be the
induced polyhedral decomposition of Td−1. As we have seen, every cell in CA is naturally assigned a
matrix and a vector determined by its fine and coarse type, respectively. The next result states that
these assignments are actually colabelings in the sense of Section 3.1.

Proposition 3.4. Let A = A(V ) be an arrangement of tropical hyperplanes in Td−1 . For every cell C ∈ CA of
codimension � 1 we have

TA(C) = max
{

TA(D): C ⊂ D
}
, and

tA(C) = max
{

tA(D): C ⊂ D
}
.

Thus, both fine and coarse type yield a colabeling for the complex CA .

Proof. As we remarked before C ⊆ D implies TA(D) � TA(C) and thus we have to show that TA(C)

is not strictly larger. For k ∈ [d] consider the set Sk(0) ⊂ Rd given by all points x ∈ Rd such that xk � xi
for all i 
= k. The sector Sk(0) is an ordinary polyhedron of dimension d and it can be checked that for
p ∈ Td−1 we have that p ∈ Smax

k (vi) implies p + Sk(0) ⊆ Sk(vi). Now, since codim(C) � 1 we get that
C + Sk(0) meets the star of C , thereby showing that if TA(C)ik = 1 for some i, then there is a cell
D ⊃ C with TA(D)ik = 1. The same argument proves the purported equality for the coarse type. �

As an immediate consequence we obtain sets of generators for the fine and the coarse type ideals.
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Corollary 3.5. For a tropical hyperplane arrangement A both the fine and coarse type ideals are generated by
monomials corresponding to the respective types on the inclusion-maximal cells of CA .

We now have all the ingredients to establish our first main result linking the fine/coarse type
ideals with the polyhedral decomposition CA .

Theorem 3.6. Let A = A(V ) be a tropical hyperplane arrangement, and let CA be the decomposition of the
tropical torus Td−1 induced by A. Then with labels given by fine type (respectively, coarse type) the labeled
complex CA supports a minimal cocellular resolution of the fine type ideal IT (A) (respectively, the coarse type
ideal It(A)).

Proof. By Proposition 3.4 the polyhedral complex CA is colabeled by both fine and coarse type. It
follows from Lemma 3.3 and Corollary 2.13 that this yields a cellular resolution of the respective type
ideal. The minimality is a consequence of Proposition 2.8. �

A key point is that all of the above is valid for point configurations V which are not necessarily in
general position. In the case of hyperplanes in general position, the coarse type ideal is well known
and, in particular, is independent of the choice of hyperplanes.

Corollary 3.7. Let A = A(V ) be a sufficiently generic arrangement of n tropical hyperplanes in Td−1 . Then
CA supports a minimal cocellular resolution of

It(A) = 〈x1, . . . , xd〉n

the n-th power of the homogeneous maximal ideal.

Since the minimal resolution of an ideal is unique up to isomorphism, we have that the res-
olution arising from Corollary 3.7 is always isomorphic (as a chain complex), to the well-known
Eliahou–Kervaire resolution [14, Section 2.3]. However, Corollary 3.7 shows that there is a multitude
of colabeled complexes coming from tropical hyperplane arrangements that give rise to a cellular
description of the minimal resolution of 〈x1, . . . , xn〉d .

We next turn to the other class of ideals introduced in the beginning of this section, namely the
fine and coarse cotype ideals. As was the case with the type ideals, we first consider the labeling of
the relevant complexes.

Proposition 3.8. Let A = A(V ) be an arrangement of tropical hyperplanes. For every cell D ∈ CA of dimen-
sion � 1 we have

TA(D) = max
{

TA(C): C ⊂ D
}

and

tA(D) = max
{

tA(C) : C ⊂ D
}
.

Thus, both the fine and coarse types yield labelings for the complex CA .

Proof. The assertion follows by showing that

TA(D) � min
{

TA(C): C ⊂ D
}
.

We mimic the argument in the proof of Proposition 3.4. It follows from the full-dimensionality of Q k
that C + Q k intersects D for every cell C ⊂ D and thus T (D)ik � T (C)ik for all C in the boundary
of D . �
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The previous proposition implies that the cotype ideals are generated by the inclusion-minimal
faces (namely, the 0-dimensional cells) of CA . As a consequence (together with the last part of Corol-
lary 2.13) we see that resolutions of these ideals are supported on the collection of bounded faces
of CA , and we obtain our next main result. This generalizes [4, Theorem 1].

Theorem 3.9. Let A = A(V ) be an arrangement of tropical hyperplanes and let BA be the subcomplex of
bounded cells of CA . Then BA , with labels given by fine cotype (respectively, coarse cotype) supports a minimal
resolution of the fine cotype ideal IT (A) (respectively, coarse cotype ideal It(A)).

It is tempting to see the fine cotype ideal as some kind of polarization of the coarse cotype ideal
in the sense of [14, Section 3.2]. But we are not aware of a precise result in this direction. Notice that
not every square-free monomial ideal I in F[xij] is the polarization of the ideal J in F[xi] obtained
via the map π = xij �→ xi . An example is I = 〈x11x22x31, x12x21x41〉. The image is J = 〈x1x2x3, x1x2x4〉.
Both ideals are resolved by the 1-simplex but taking the 1-simplex labeled with the generators of I
and “contracting” the labels via π yields x1

2x2
2x3x4 as the label for the full 1-simplex, and hence the

downset for (1,1,1,1) is not contractible.

Example 3.10. The tropical hypersimplex �trop(k,n) is defined as the tropical convex hull of all 0/1-
vectors of length n with exactly k zeros. Notice that we have the strict inclusions

�trop(1,n) � �trop(2,n) � · · ·� �trop(n − 1,n).

We wish to determine the coarse type ideal corresponding to the configuration of
(d

k

)
points in Td−1

given by the tropical vertices of �trop(k,d). The d generators of �trop(1,d) are in general position,
and hence in this case the coarse type ideal is the homogeneous maximal ideal 〈x1, x2, . . . , xd〉. The
second tropical hypersimplex �trop(2,d) is contained in the min-tropical hyperplane with the origin
as its apex. In particular, �trop(2,d), seen as a polytopal complex in Rd−1 = Td−1, is of dimension
d − 2. This implies that all maximal cells in the type decomposition of Td−1 induced by the tropical
vertices of �trop(k,d) are unbounded if 2 � k < d. Equivalently, no generator of the coarse type ideal
is divisible by x1x2 · · · xd . The following is a special case of [11, Theorem 11].

Proposition 3.11. Let 2 � k < d. Then, up to action of the symmetric group, the coarse types induced by the
k-th tropical hypersimplex in Td−1 are given by

((
d − α

k

)
+

(
d − 1

k − 1

)
,

(
d − 2

k − 1

)
, . . . ,

(
d − α

k − 1

)
,0, . . . ,0

)
∈Nd

where 1 � α � d − k + 1.

4. The mixed subdivision picture

As mentioned in Section 2.2, an arrangement A = A(V ) of n hyperplanes in Td−1 gives rise to a
regular subdivision of the product of two simplices �n−1 × �d−1 and, via the Cayley trick, a mixed
subdivision of a dilated simplex (see Fig. 3). We refer to the recent book [5] for the relevant details
and here only outline the main ideas. Let �k−1 = conv{e1, e2, . . . , ek} ⊂ Rk be the standard (k − 1)-
simplex. The ordered apices V = (v1, . . . , vn) induce a height function on the vertices of �n−1 ×�d−1
by (ei, e j) �→ (vi) j . The lower envelope of the convex hull of the lifted points yields a regular (or
coherent) subdivision of �n−1 × �d−1 and it is shown in [6] that these regular subdivisions are in
bijection with the tropical complexes of n tropical hyperplanes in Td−1. The polytope �n−1 ×�d−1 can
be viewed as a Cayley polytope and hence, via the Cayley trick, tropical hyperplane arrangements are
in bijection with regular mixed subdivisions of n�d−1. A mixed subdivision of n�d−1 is a polyhedral
subdivision such that every cell is of the form τ = �I1 + �I2 + · · · + �In where I j ⊆ [d] and �I j =
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Fig. 3. Mixed subdivision of 4�2 corresponding to Example 2.3.

conv{ei: i ∈ I j} is a face of �d−1. The mixed subdivision is called fine if dimτ = ∑
j dim�I j . The aim

of this section is to interpret our results from the previous sections in terms of mixed subdivisions of
dilated simplices. For this it will be convenient to have the following notion of coarse type of a cell
defined purely in terms of the mixed subdivision.

Definition 4.1. Let τ = �I1 +�I2 +· · ·+�In be a cell in a mixed subdivision of n�d−1. The coarse type
t(τ ) ∈Nd of τ is the vector whose i-th coordinate equals #{ j ∈ [n]: i ∈ I j}, the number of occurrences
of i in the decomposition of τ . The dual coarse type d(τ ) ∈ Nn is a vector whose i-th coordinate is
given by #Ii , the number of elements of Ii .

The following proposition relates to Remark 2.6 made above. Here we provide a complete proof
which does appeal to tropical geometry and hence applies to the more general situation of not nec-
essarily regular subdivisions.

Proposition 4.2. In any fine mixed subdivision Σ of n�d−1 , the set of 0-dimensional cells are precisely the
lattice points n�d−1 ∩ Zd, and the collection of coarse types of these cells are in bijection with the set of
compositions of n into d parts.

Proof. Let τ = �I1 + �I2 + · · · + �In be a fine mixed cell of Σ . It follows from the definition of fine
mixed cell that if τ is zero-dimensional, then so is �I j for all j. Hence τ = ei1 + ei2 + · · · + ein is
a lattice point in n�d−1 and its coarse type is a composition of n into d parts. In order to show
that all such lattice points arise as 0-dimensional cells, let t ∈ n�d−1 ∩ Zd and let τ = ∑n

j=1 �I j be
the inclusion-minimal mixed cell containing t . By [16, Prop. 14.12] every lattice point of τ is of the
form

∑n
j=1{ei j } with i j ∈ I j for all j. However, as the mixed subdivision is fine, τ is combinatorially

isomorphic to the product
∏n

j=1 �I j and hence every sum of vertices is a vertex. Therefore, τ is a
vertex of the mixed subdivision Σ . �
4.1. Resolutions supported by mixed subdivisions

In this section we discuss our results regarding cellular resolutions in the context of mixed sub-
divisions of dilated simplices. Although these results are more or less translations of the above via
the Cayley trick, we find it useful to make this transition explicit. It seems that the mixed subdivision
picture allows for more natural statements whereas the tropical convexity picture allows for more
natural proofs. We refer the reader back to Definition 4.1 for the definition of coarse type of a mixed
cell.

Corollary 4.3. Let Σ be any regular mixed subdivision of n�d−1 . Consider Σ to be a labeled polytopal complex
with each face σ labeled by the least common multiple of the vertices that it contains. Then for any field F, the
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complex ΣA supports a minimal cellular resolution of the coarse type ideal It(A) = 〈xt(p): p ∈ Td−1〉 in
F[x1, . . . , xd].

Proof. The fact that ΣA is a labeled complex follows from Proposition 3.4. As a poset ΣA is isomor-
phic to the corresponding regular subdivision of �n−1 × �d−1 via the Cayley trick. By [6, Lemma 22]
this regular subdivision is dual to the cell decomposition CA of Td−1. In this way the labeling of ΣA
turns into the colabeling of BA by coarse types. Theorem 3.6 now establishes the claim. �

It is now straightforward to derive the mixed subdivision result corresponding to Corollary 3.7.

Corollary 4.4. Let Σ be any regular fine mixed subdivision of n�d−1 . Then ΣA , as a labeled polyhedral
complex, supports a minimal cellular resolution of 〈x1, . . . , xd〉n.

Proof. This follows from Corollary 4.3 and Proposition 4.2. �
Question 4.5. Is there a good characterization of the monomial ideals I ⊂ F[x1, . . . , xd] arising as It(A)

for some arrangement A of tropical hyperplanes in Td−1 in terms of commutative algebra?

Some necessary conditions are obvious, e.g., I should be homogeneous of some degree n, and that
xd

i should be contained in I for all i. In particular, this means that any coarse type ideal is necessarily
Artinian.

4.2. Alexander duality of ideals and resolutions

We have seen how the bounded subcomplexes of tropical hyperplane arrangements are related to
mixed subdivisions of dilated simplices in terms of a geometric duality. This duality extends to the
algebraic level of our resolutions in the context of Alexander duality of resolutions. For this we will need
the following notion of the Alexander dual of a (not necessarily square-free) monomial ideal.

Definition 4.6. Suppose I is a monomial ideal in the polynomial ring F[x1, . . . , xd] and let a ∈ Nd . The
Alexander dual of I with respect to a is given by the intersection

I [a] =
⋂{

ma\b: xb is a minimal generator of I
}
,

where a\b denotes the vector whose i-th coordinate is ai + 1 − bi if bi � 1, and is 0 if bi = 0. Here
we borrow the notation ma := 〈xai

i : ai � 1〉.

Note that if I is a square-free monomial ideal (and hence the Stanley–Reisner ring of some simpli-
cial complex) and a = 1 is taken to be the all-ones vector, then this notion recovers the more familiar
notion of Alexander duality of simplicial complexes. The main result concerning duality of resolutions,
relevant for us, is the following [14, Theorem 5.37].

Theorem 4.7. Suppose I is a monomial ideal in degrees preceding some a ∈ Nd and suppose FP• is a minimal
cellular resolution of S/(I + ma+1) such that all face labels on P precede a + 1. Let Q denote the labeled

complex with the same underlying complex P but with labels tF = a + 1 − tF . Then FQ�a• is a minimal
cocellular resolution of I [a] .

Applying this theorem we obtain the following dual resolution of the coarse cotype ideal. For σ a
face of a mixed subdivision Σ , the coarse cotype of σ is defined to be n1 − t(σ ), where t(σ ) is the
coarse type of σ defined in Definition 4.1.



318 A. Dochtermann et al. / Journal of Algebra 356 (2012) 304–324
Proposition 4.8. Given any arrangement A of n tropical hyperplanes in Td−1 , let ΣA denote the associated
mixed subdivision of n�d−1 with labels given by coarse cotype. Then ΣA supports a minimal cocellular reso-
lution of the coarse cotype ideal It(A) in F[x1, . . . , xd]. Consequently the associated tropical complex BA , with
labels given by coarse cotype, supports a minimal cellular resolution of It(A) .

Proof. We apply Theorem 4.7 with a := (n − 1)1, and with I defined to be the ideal generated by all
monomials f of It(A) with f � a (in other words, throw out all generators of the form xn

i for 1 � i � d,
all of which show up in It(A) regardless of the arrangement A). We then have from Corollary 4.3 that
ΣA supports a minimal cellular resolution of It(A) = I +ma+1. The conditions of Theorem 4.7 are met
and we conclude that (ΣA)�a supports a minimal cocellular resolution of I [a] .

We next determine I [a] , the Alexander dual of I with respect to a = (n − 1)1. In [14] it is shown
that if b � a then xb lies outside I if and only if xa−b lies inside I [a] . Hence to find a set of generators
for I [a] it suffices to determine the maximal monomials which lie outside I . But these monomials
correspond to the minimal cotypes that arise in the complex CA , and these are given by the collection
of monomials t(x), for x a 0-dimensional cell in CA . Hence we conclude that I [a] = It(A) .

For the second part of the claim, we note that a face σ ∈ ΣA with label b satisfies b � a if
and only if n1 − t(σ ) � (n − 1)1 for the coarse type label t(σ ) in ΣA . But this occurs exactly when
t(σ ) � 1, which happens if and only if the face σ is not contained in the boundary of ΣA . Hence the
cocellular resolution of I [a] that we obtain, supported on (ΣA)�a , is given by the relative cocellular
complex of (ΣA, ∂ΣA). By duality, the relative cochain complex C∗(ΣA, ∂ΣA) is isomorphic to the
chain complex C∗(BA) of the tropical complex BA (the bounded subcomplex of the decomposition
of Td−1 induced by A). Hence BA , with labels given by coarse cotype, supports a minimal cellular
resolution of the ideal I [a] = It(A) . �

Let us illustrate our results with one particularly well-behaved fine mixed subdivision of n�d−1
that arises from applying the Cayley trick to the staircase triangulation of �n−1 × �d−1. The name
derives from the fact that the maximal cells correspond to monotone lattice path from (1,1) to (n,d).
Here, the vertices of �n−1 ×�d−1 are indexed by the nodes of an n×d-grid. To every such lattice path
given by 1 = b1 � b2 � · · ·� bn � bn+1 = d the corresponding cell is �B1 +�B2 +· · ·+�Bn with Bi :=
{ebi , ebi+1, . . . , ebi+1} for 1 � i � n. The collection of these cells forms a regular fine mixed subdivision
of n�d−1. The corresponding tropical hyperplane arrangement is the so-called cyclic arrangement [4]
given by V = (i + j)i j . The case of n = d = 3 is hinted at in [14, Example 2.20]. In [18] Sinefakopoulos
constructs a cellular resolution of 〈x1, . . . , xd〉n as the basis for minimal cellular resolutions of Borel
fixed ideals generated in one degree, and shows that this complex can be realized as a subdivision of
a simplex. It can be checked that this complex is isomorphic (as a labeled complex) to the staircase
mixed subdivision. From our results we see that any regular fine mixed subdivision of n�d−1 supports
a minimal cellular resolution of the homogeneous ideal 〈x1, . . . , xd〉n .

5. Face counting and incidence structure of the tropical complex

In Section 3 we saw how the polyhedral complexes CA and BA associated to an arrangement A
gave rise to resolutions of the coarse type ideal It(A) and the fine cotype ideal IT (A) , respectively. The
minimality of our resolution also leads to some important implications regarding the combinatorics
of CA and BA themselves. In this section we discuss face numbers of tropical complexes, as well as
an algorithm for determining the facial structure of BA given the arrangement A = A(V ). The latter
generalizes a result of [4], where a similar algorithm for the case of sufficiently generic arrangements
was provided.

5.1. Counting faces

As a first application we point out that the f -vector of CA can be determined from the Z-graded
(‘coarse’) Betti numbers of It(A) . We noted in Proposition 2.9 that from the coarse type it is possible
to distinguish bounded from unbounded cells in CA . Thus, we can also recover the numerical behavior
of the bounded complex BA .
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Corollary 5.1. Let A = A(V ) be a tropical hyperplane arrangement in Td−1 and let It(A) be its coarse type
ideal. Then the number of cells in CA of dimension k is

fk(CA) = βd−1−k(It(A)) =
∑
b∈Zd

βd−1−k,b(It(A)).

The number of bounded k-cells in CA is given by as the sum of Betti numbers βd−1−k,b(It(A)) for which b > 0.

Note that for the k-cells we need to consider the (d−1−k)-th Betti numbers. This is due to the
fact that CA supports a cocellular resolution.

Furthermore, we can use the uniqueness of minimal resolutions to derive further results regarding
face numbers of arrangements. For this, suppose A is a sufficiently generic arrangement of n tropical
hyperplanes in Td−1, and let CA denote the induced polyhedral subdivision of Td−1 determined by
type. In Corollary 3.7 we saw that CA , with labels given by coarse type, supports a minimal cocellular
resolution of the ideal 〈x1, . . . , xd〉n . Any two such resolutions are isomorphic as chain complexes, and
in particular the finely graded Betti numbers βi,σ do not depend on the resolution. By construction,
βi,σ is precisely the number of cells in CA with monomial label σ . But the monomial labels are given
by the coarse types, and hence we obtain the following.

Corollary 5.2. Let A be a sufficiently generic arrangement of n hyperplanes in Td−1 . For every 0 � k � d − 1
the collection of coarse types t(CT ) for dim CT = k, counted with multiplicities, is independent of the arrange-
ment.

Putting the above result in perspective with the second statement of Corollary 5.1, this proves the
following result without appealing to the equidecomposability of �n−1 × �d−1.

Corollary 5.3. The number of cells of CA for a tropical hyperplane arrangement A in general position is in-
dependent of the choice of hyperplanes. More precisely, the number of k-dimensional cells induced by the
arrangement of n tropical hyperplanes in Td−1 equals

fk(CA) =
k∑

�=0

(
n + d − 2 − �

n − 1

)(
d − 1 − �

d − 1 − k

)
.

Proof. By Corollaries 5.1 and 3.7 we have fk(CA) = βd−1−k(〈x1, . . . , xn〉n). The Betti numbers of the
power of the homogeneous maximal ideal are well known. For example, they can be determined as
follows.

The ideal mn = 〈x1, . . . , xd〉n is strongly stable, that is, xr
xs

xb ∈ mn for every xb monomial divisible
by xs and r < s. In particular, mn is Borel fixed, and hence the Betti numbers are given by [14, Theo-
rem 2.18], and we have

βi
(
mn) =

∑
a∈Nd,|a|=n

(
max(xa) − 1

i

)

where max(xa) = max{i: ai > 0}. Now if max(xa) = �, then

a = (a1,a2, . . . ,a� + 1,0, . . . ,0)

with a1, . . . ,a� � 0 and
∑

i ai = n − 1. Hence, the number of generators xa with max(xa) = � is the
number of monomials in � variables of total degree n − 1. This yields
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βi
(
mn) =

d∑
�=1

(
n − 2 + �

n − 1

)(
� − 1

i

)
.

Now substitute i in the formula with d − 1 − k. �
Using the connection to mixed subdivisions of n�d−1 outlined in Section 4, the above result states

that all regular fine mixed subdivisions of n�d−1 have the same face numbers. For the case of vertices,
Corollary 5.3 was already established in 4.2, where the it was shown that the 0-dimensional cells in
any fine mixed subdivision correspond to the lattice points of n�d−1. The case of facets can also be
proven directly using mixed volume calculations, but we know of no such interpretation for the other
faces.

5.2. Incidence structure of the bounded complex from the fine cotype ideal

In [4] Block and Yu develop an algorithm to compute the bounded complex of a generic tropical
hyperplane arrangement A = A(V ) that employs methods from computational commutative algebra.
There it is shown that the bounded complex supports a minimal cellular resolution of a monomial
ideal which we have called the fine cotype ideal I T (A) associated to A. It turns out that this ideal is
an initial ideal of the toric ideal In,d for the vertices of �n−1 × �d−1. The results in [4] rely on the
genericity of the arrangement in two ways: i) the fact that the bounded complex supports a resolution
of the fine cotype ideal is proved by appealing to the polyhedral detour to tropical convexity presented
in [6], and ii) the genericity is needed to guarantee that the initial ideal is indeed monomial.

In this section we extend their algorithm to the case of non-generic hyperplane arrangements.
We bypass the two mentioned dependences on genericity as follows. In Section 3 we have already
shown that the bounded complex resolves the fine cotype ideal for an arbitrary arrangement, using
first principles in tropical convexity. As for ii), we next show that the fine cotype ideal is the maximal
monomial ideal contained in the initial ideal associated to the weights V . In terms of polyhedral ge-
ometry, this corresponds to the passage from the polyhedral subdivision ΣV of �n−1 × �d−1 induced
by V to the crosscut complex.

The results of the previous sections cannot directly be turned into a practical algorithm as the fine
cotype ideal can only be determined after computing the bounded complex or, at least, the vertices
of CA . In the case of a generic arrangement of tropical hyperplanes this problem is resolved in [4] as
follows. The ideal

In,d = 〈
xikx jl − xilx jk: i, j ∈ [n], k, l ∈ [d]〉

of 2 × 2-minors of a general n ×d-matrix in F[x11, . . . , xnd] is the toric ideal associated to the vertices
of the ordinary lattice polytope �n−1 × �d−1. The initial ideal inV (In,d) with respect to the weights
V is a squarefree monomial ideal and, by a celebrated result of Sturmfels [19, Theorem 8.3] is equal
to the Stanley–Reisner ideal IΣ of the triangulation Σ of �n−1 × �d−1 induced by V ; see Section 4.
The face poset of the bounded complex BA is anti-isomorphic to the subposet of interior cells of Σ .
In short, there is a bijection between i-cells of CA and (n + d − 2 − i)-cells of Σ which lie in the
interior of �n−1 ×�d−1. The bijection takes a cell of fine type T to the cell of Σ with vertices (ei, e j)

for Tij = 1. Finally, the Alexander dual of IΣ is the monomial ideal generated by the fine cotypes of
the vertices of CA .

If the placement V of the hyperplanes is not generic, then the induced subdivision Σ is not a
triangulation. However, the above bijection is unaffected and, in particular, the fine type of a vertex
of CA can be read off the corresponding facet of Σ . We define the crosscut complex CrossCut(Σ) ⊆
2[n]×[d] to be the unique simplicial complex with the same vertices-in-facets incidences as the poly-
hedral complex Σ . The crosscut complex is a standard notion in combinatorial topology and can be
defined in more generality (see Björner [3, pp. 1850ff]).
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Proposition 5.4. For V an ordered sequence of n points in Td−1 let A = A(V ) be the corresponding tropical
arrangement and let Σ be the regular subdivision of �n−1 × �d−1 induced by V . Then the fine cotype ideal
IT (A) is Alexander dual to the Stanley–Reisner ideal of CrossCut(Σ).

Proof. Both ideals in question are squarefree monomial ideals and hence we can identify their mono-
mial generators with subsets of [n]×[d]. Let T ⊆ [n]×[d]. This is a fine cotype of a minimal (bounded)
cell of CA if and only if the complement T = [n] × [d] \ T corresponds to the vertex set of a maximal
cell of Σ . This in turn holds if and only if T is a facet of CrossCut(Σ) if and only if T is a minimal
non-face of CrossCut(Σ), and hence a generator of the Alexander dual. �

The crosscut complex encodes the information of which collections of vertices lie in a common
face. Hence, the crosscut complex is a purely combinatorial object and does not see the affine struc-
ture of the underlying polyhedral complex.

Algebraically, the initial ideal inV (In,d) is a coherent A-graded ideal in the sense of [19, Chapter 10]
and encodes the corresponding polyhedral subdivision Σ induced by V (see [19, Theorem 10.10]).
The ideal inV (I) of a toric ideal I is generated by monomials and binomials. Intuitively, the binomials
encode the affine structure within cells of Σ , that is, the affine dependencies, while the monomial
generators encode the Stanley–Reisner data for the crosscut complex. For an arbitrary ideal J , denote
by M( J ) the largest monomial ideal contained in J .

Lemma 5.5. Let I A be the toric ideal for A ∈ Nd×n and for ω ∈ Rn let J = inω(I A) and Σ the regular subdi-
vision of A induced by ω. Then the radical of M( J ) is the Stanley–Reisner ideal of the crosscut complex of Σω ,
that is

IRad(M( J )) = ICrossCut(Σ).

Proof. By Theorem 10.10 of [19], the ideal J is the intersection of ideals Jσ indexed by the faces
σ ∈ Σ and Jσ is torus isomorphic to Iσ = I A + 〈xi: i /∈ σ 〉. Hence, we have

M( J ) =
⋂
σ∈Σ

M(Iσ ).

Under the projection map F[x1, . . . , xn] → F[xi: i ∈ σ ] that takes xi �→ 0 for i /∈ σ , Iσ is isomorphic
to the toric ideal corresponding to the columns of A indexed by σ ⊆ [n]. Hence, a monomial xa is
contained in Iσ if and only if supp(xa) � σ . Therefore M(Iσ ) = 〈xi: i /∈ σ 〉 and for τ ⊆ [n] we have
that xτ ∈ Rad(M( J )) if and only if τ is not contained in any cell of Σ . �

A special case of this lemma appears in [17, Lemma 4.5.4]. Since the toric ideal In,d is unimodular,
the ideal M(inV (In,d)) is automatically squarefree and we obtain the following corollary.

Corollary 5.6. Let A = A(V ) be a tropical hyperplane arrangement and let J = inV (In,d) the initial ideal of
In,d for the weights V . Then the Alexander dual of the squarefree monomial ideal M( J ) is the fine cotype ideal
of A.

In the case that A is generic, the ideal M( J ) coincides with the initial ideal inV (In,d) and hence re-
covers the main result of [4]. Moreover, it entails the modification of the algorithm in [4] by replacing
the ideal inV (In,d). We describe our Algorithm A below.

An algorithm for calculating M(·) for an ideal is given in [17, Algorithm 4.4.2]. All necessary algo-
rithms are implemented in the computer algebra system Macaulay2 [9] with which we computed
the following example that illustrates the results of this section.
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input : matrix V ∈R
n×d

output : face poset of BA(V )

calculate the initial ideal J = inV (In,d)1
calculate M( J ) = 〈xa: xa ∈ J 〉2
calculate the Alexander dual M( J )∗3
find a minimal fine graded resolution to determine the face poset of BA(V )4

Algorithm A: Computing the face poset of the tropical complex.

Fig. 4. Non-generic arrangement in T
2 with labeling by fine type.

Example 5.7. Consider the points v1 = (0,1,1), v2 = (0,0,1), and v3 = (0,1,0) in T2. The induced
type decomposition is shown in Fig. 4. We have

I3,3 = 〈x11x22 − x12x21, x11x33 − x13x31, x12x31 − x11x32,

x12x33 − x13x32, x13x21 − x11x23, x13x22 − x12x23,

x21x33 − x23x31, x22x31 − x21x32, x22x33 − x23x32〉,

and the underlined initial forms with respect to the weights deg(xij) = (vi) j generate the ideal
J = inV (I). The largest monomial is

M( J ) = 〈x12x21, x12x23, x13x31, x23x31, x13x32, x21x32, x23x32〉,

and this is squarefree. Its Alexander dual is

M( J )∗ = 〈x13x21x23, x12x13x23x32, x12x31x32, x21x23x31x32〉.

These four generators of M( J )∗ encode the fine cotypes of the points v3, (0,0,0), v2, and v1, respec-
tively. Setting S = F[x11, x12, . . . , x33] we obtain the minimal free resolution

0 → S
φ3−→ S4 φ2−→ S4 φ1−→ I → 0,
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where the non-trivial differentials φi are given by the matrices

φ1 = ( x13x21x23 x12x31x32 x21x23x31x32 x12x13x23x32 ) ,

φ2 =
⎛
⎜⎝

0 −x31x32 −x12x32 0
−x21x23 0 0 −x13x23

x12 x13 0 0
0 0 x21 x31

⎞
⎟⎠ ,

φ3 =
⎛
⎜⎝

−x13
x12

−x31
x21

⎞
⎟⎠ .

These matrices are to be multiplied to column vectors from the left. The non-zero finely graded Betti
numbers are

β0,(12,13,23,32) = β0,(12,31,32) = β0,(21,23,31,32) = β0,(13,21,23) = 1,

β1,(12,13,23,31,32) = β1,(12,21,23,31,32) = β1,(13,21,23,31,32) = β1,(12,13,21,23,32) = 1,

β2,(12,13,21,23,31,32) = 1,

where, for example, (12,13,23,32) is the squarefree monomial x12x13x23x32 corresponding to the
point (0,0,0). Note that we are resolving the ideal M( J )∗ rather than the quotient S/M( J )∗ (which
would yield a shift of +1 in the first coordinate of each Betti number). The non-zero coarsely graded
Betti numbers are then

β0,3 = β0,4 = 2, β1,5 = 4, β2,6 = 1.

6. Further remarks and open questions

Having constructed cellular resolutions of ideals arising from regular mixed subdivisions of dilated
simplices, a natural question to ask is if the assumption of regularity is really necessary. The relevant
properties of our subdivisions were established by considering them as induced by arrangements of
tropical hyperplanes, and hence these subdivisions were always regular. However, the construction of
a labeled complex from an arbitrary mixed subdivision of n�d−1 still makes sense, and it is an open
question (as far as we know) whether these also support cellular resolutions. As a special case, in
light of Proposition 4.2 we can ask whether any fine mixed subdivision of n�d−1 supports a minimal
cellular resolution of 〈x1, . . . , xd〉n .

A connection to tropical geometry is provided by the tropical oriented matroids of Ardila and Develin
from [1]. There the authors introduce an axiomatic approach to the study of (fine) types, with a list of
properties which they show are satisfied by the collection of fine types arising from an arrangement
of tropical hyperplanes. It is conjectured that all abstract oriented matroids are realized by arbitrary
subdivisions, and if this were the case we might think of the ideals described in the previous para-
graph as ‘tropical oriented matroid ideals’. A further task would be to relate the algebraic properties
of these ideals with the combinatorial properties of the underlying matroid, in the spirit of [15].

As mentioned above, another unresolved question is to characterize which monomial ideals arise
as coarse type ideals for some tropical hyperplane arrangement. We have seen that certain necessary
properties are easy to deduce but it seems difficult to provide a complete classification. Do these
ideals fit into some other well-known class?
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