21 research outputs found

    Updating the European Union's regulation on classification, labelling and packaging of substances and mixtures (CLP): A key opportunity for consumers, workers and stakeholders with interests in the legislation and toxicology of hazardous chemicals

    Get PDF
    Recent advancements in toxicology and the European Union's Green Deal, with its Chemicals Strategy for Sustainability, have paved the way for major changes in EU legislation on the control of environmental chemicals for a cleaner and safer environment. Another substantial legislative advancement underway is the update of the \u201cRegulation on Classification, Labelling and Packaging of Substances and Mixtures (CLP),\u201d an ambitious piece of EU legislation with exceptional scientific toxicological background in identifying a hazard, aiming at better protecting its citizens and the environment from the risk of chemical substances and products, the occupational settings included. Update of CLP legislation additionally aims at facilitating the free exchange of chemicals in the European Internal Market, provided that proper labelling and packaging processes are implemented. Participation in the ongoing online public consultation on these issues, ending on November 15, 2021, is of key relevance to ensure a transparent and effective definition of such an important piece of legislation, fully compliant with current EU priorities in terms of human and environmental protection and animal welfare

    COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence

    Get PDF
    Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics

    Towards effective COVID\u201119 vaccines: Updates, perspectives and challenges (Review)

    Get PDF
    In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS\u2011COV\u20112, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID\u201119 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale

    Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms

    Get PDF
    Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields

    Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics

    Get PDF
    Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner

    Back to basics in COVID-19: Antigens and antibodies—Completing the puzzle

    No full text
    The outbreak of the coronavirus disease 2019 (COVID-19) has gathered 1 year of scientific/clinical information. This informational asset should be thoroughly and wisely used in the coming year colliding in a global task force to control this infection. Epidemiology of this infection shows that the available estimates of SARS-CoV-2 infection prevalence largely depended on the availability of molecular testing and the extent of tested population. Within molecular diagnosis, the viability and infectiousness of the virus in the tested samples should be further investigated. Moreover, SARS-CoV-2 has a genetic normal evolution that is a dynamic process. The immune system participates to the counterattack of the viral infection by pathogen elimination, cellular homoeostasis, tissue repair and generation of memory cells that would be reactivated upon a second encounter with the same virus. In all these stages, we still have knowledge to be gathered regarding antibody persistence, protective effects and immunological memory. Moreover, information regarding the intense pro-inflammatory action in severe cases still lacks and this is important in stratifying patients for difficult to treat cases. Without being exhaustive, the review will cover these important issues to be acknowledged to further advance in the battle against the current pandemia

    Leveraging artificial intelligence to advance the understanding of chemical neurotoxicity

    No full text
    Neurotoxicology is a specialty that aims to understand and explain the impact of chemicals, xenobiotics and physical conditions on nervous system function throughout the life span. Herein, we point to the need for integration of novel translational bioinformatics and chemo-informatics approaches, such as machine learning (ML) and artificial intelligence (AI) to the discipline. Specifically, we advance the notion that AI and ML will be helpful in identifying neurotoxic signatures, provide reliable data in predicting neurotoxicity in the context of genetic variability, and improve the understanding of neurotoxic outcomes associated with exposures to mixtures, to name a few

    Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics

    No full text
    Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner

    Six months exposure to a real life mixture of 13 chemicals' below individual NOAELs induced non monotonic sex-dependent biochemical and redox status changes in rats

    No full text
    This study assessed the potential adverse health effects of long-term low-dose exposure to chemical mixtures simulating complex real-life human exposures. Four groups of Sprague Dawley rats were administered mixtures containing carbaryl, dimethoate, glyphosate, methomyl, methyl parathion, triadimefon, aspartame, sodium benzoate, calcium disodium ethylene diamine tetra-acetate, ethylparaben, butylparaben, bisphenol A, and acacia gum at doses of 0, 0.25, 1 or 5 times the respective Toxicological Reference Values (TRV): acceptable daily intake (ADI) or tolerable daily intake (TDI) in a 24 weeks toxicity study. Body weight gain, feed and water consumption were evaluated weekly. At 24 weeks blood was collected and biochemistry parameters and redox status markers were assessed. Adverse effects were observed on body weight gain and in hepatotoxic parameters such as the total bilirubin, alanine aminotransferase (ALT) and alkaline phosphatase (ALP), especially in low dose and affecting mainly male rats. The low dose group showed increased catalase activity both in females and males, whereas the high dose group exhibited decreased protein carbonyl and total antioxidant capacity (TAC) levels in both sex groups. Non-monotonic effects and adaptive responses on liver function tests and redox status, leading to non-linear dose-responses curves, are probably produced by modulation of different mechanisms. © 2018 Elsevier Lt
    corecore