939 research outputs found

    DNAscan: personal computer compatible NGS analysis, annotation and visualisation.

    Get PDF
    BACKGROUND: Next Generation Sequencing (NGS) is a commonly used technology for studying the genetic basis of biological processes and it underpins the aspirations of precision medicine. However, there are significant challenges when dealing with NGS data. Firstly, a huge number of bioinformatics tools for a wide range of uses exist, therefore it is challenging to design an analysis pipeline. Secondly, NGS analysis is computationally intensive, requiring expensive infrastructure, and many medical and research centres do not have adequate high performance computing facilities and cloud computing is not always an option due to privacy and ownership issues. Finally, the interpretation of the results is not trivial and most available pipelines lack the utilities to favour this crucial step. RESULTS: We have therefore developed a fast and efficient bioinformatics pipeline that allows for the analysis of DNA sequencing data, while requiring little computational effort and memory usage. DNAscan can analyse a whole exome sequencing sample in 1 h and a 40x whole genome sequencing sample in 13 h, on a midrange computer. The pipeline can look for single nucleotide variants, small indels, structural variants, repeat expansions and viral genetic material (or any other organism). Its results are annotated using a customisable variety of databases and are available for an on-the-fly visualisation with a local deployment of the gene.iobio platform. DNAscan is implemented in Python. Its code and documentation are available on GitHub: https://github.com/KHP-Informatics/DNAscan . Instructions for an easy and fast deployment with Docker and Singularity are also provided on GitHub. CONCLUSIONS: DNAscan is an extremely fast and computationally efficient pipeline for analysis, visualization and interpretation of NGS data. It is designed to provide a powerful and easy-to-use tool for applications in biomedical research and diagnostic medicine, at minimal computational cost. Its comprehensive approach will maximise the potential audience of users, bringing such analyses within the reach of non-specialist laboratories, and those from centres with limited funding available

    Wolbachia Induces Male-Specific Mortality in the Mosquito Culex pipiens (LIN Strain)

    Get PDF
    Background: Wolbachia are maternally inherited endosymbionts that infect a diverse range of invertebrates, including insects, arachnids, crustaceans and filarial nematodes. Wolbachia are responsible for causing diverse reproductive alterations in their invertebrate hosts that maximize their transmission to the next generation. Evolutionary theory suggests that due to maternal inheritance, Wolbachia should evolve toward mutualism in infected females, but strict maternal inheritance means there is no corresponding force to select for Wolbachia strains that are mutualistic in males. Methodology/Principal findings: Using cohort life-table analysis, we demonstrate that in the mosquito Culex pipiens (LIN strain), Wolbachia-infected females show no fitness costs due to infection. However, Wolbachia induces up to a 30% reduction in male lifespan. Conclusions/significance: These results indicate that the Wolbachia infection of the Culex pipiens LIN strain is virulent in a sex-specific manner. Under laboratory situations where mosquitoes generally mate at young ages, Wolbachia strains that reduce male survival could evolve by drift because increased mortality in older males is not a significant selective force

    Interspecific Hybridization Yields Strategy for South Pacific Filariasis Vector Elimination

    Get PDF
    Lymphatic filariasis (LF) is a global health problem, with over 120 million people affected annually. The current LF elimination program is focused on administering anti-filarial drugs to the entire at-risk population via annual mass drug administration (MDA). While the MDA program is proving effective in many areas, other areas may require augmentative measures such as vector control. An example of the latter is provided by some regions of the South Pacific where Aedes polynesiensis is the primary vector. Here, we describe a novel vector control approach based upon naturally occurring Wolbachia bacterial infections. Wolbachia are endosymbiotic intracellular bacteria that cause a form of sterility known as cytoplasmic incompatibility. We show that introgression crosses with mosquitoes that are infected with a different Wolbachia type results in an A. polynesiensis strain (designated ‘CP’) that is incompatible with naturally infected mosquitoes. No difference in mating competitiveness is observed between CP males and wild type males in laboratory assays. The results support continued development of the strategy as a tool to improve public health

    The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    Get PDF
    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement

    A temporal dimension to the influence of pollen rewards on bee behaviour and fecundity in Aloe tenuior

    Get PDF
    The net effect of pollen production on fecundity in plants can range from negative – when self-pollen interferes with fecundity due to incompatibility mechanisms, to positive – when pollen availability is associated with increased pollinator visitation and fecundity due to its utilization as a reward. We investigated the responses of bees to pollen and nectar rewards, and the effects of these rewards on pollen deposition and fecundity in the hermaphroditic succulent shrub Aloe tenuior. Self-pollinated plants failed to set fruit, but their ovules were regularly penetrated by self-pollen tubes, which uniformly failed to develop into seeds as expected from ovarian self-incompatibility (or strong early inbreeding depression). Bees consistently foraged for pollen during the morning and early afternoon, but switched to nectar in the late afternoon. As a consequence of this differential foraging, we were able to test the relative contribution to fecundity of pollen- versus nectar-collecting flower visitors. We exposed emasculated and intact flowers in either the morning or late afternoon to foraging bees and showed that emasculation reduced pollen deposition by insects in the morning, but had little effect in the afternoon. Despite the potential for self-pollination to result in ovule discounting due to late-acting self-sterility, fecundity was severely reduced in artificially emasculated plants. Although there were temporal fluctuations in reward preference, most bee visits were for pollen rewards. Therefore the benefit of providing pollen that is accessible to bee foragers outweighs any potential costs to fitness in terms of gender interference in this species

    New evidence on the tool-assisted hunting exhibited by chimpanzees (Pan troglodytes verus) in a savannah habitat at Fongoli, Sénégal

    Get PDF
    For anthropologists, meat eating by primates like chimpanzees (Pan troglodytes) warrants examination given the emphasis on hunting in human evolutionary history. As referential models, apes provide insight into the evolution of hominin hunting, given their phylogenetic relatedness and challenges reconstructing extinct hominin behaviour from palaeoanthropological evidence. Among chimpanzees, adult males are usually the main hunters, capturing vertebrate prey by hand. Savannah chimpanzees (P. t. verus) at Fongoli, Sénégal are the only known nonhuman population that systematically hunts vertebrate prey with tools, making them an important source for hypotheses of early hominin behaviour based on analogy. Here, we test the hypothesis that sex and age patterns in tool-assisted hunting (n=308 cases) at Fongoli occur and differ from chimpanzees elsewhere, and we compare tool-assisted hunting to the overall hunting pattern. Males accounted for 70% of all captures but hunted with tools less than expected based on their representation on hunting days. Females accounted for most toolassisted hunting. We propose that social tolerance at Fongoli along with the tool-assisted hunting method, permits individuals other than adult males to capture and retain control of prey, which is uncommon for chimpanzees. We assert that tool-assisted hunting could have similarly been important for early hominins

    NMR Derived Model of GTPase Effector Domain (GED) Self Association: Relevance to Dynamin Assembly

    Get PDF
    Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its ‘coiled coil’ GTPase Effector Domain (GED), which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO) and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly

    Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes

    Get PDF
    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
    corecore