8 research outputs found
Optimization of a parallel permutation testing function for the SPRINT R package
The statistical language R and its Bioconductor package are favoured by many biostatisticians for processing microarray data. The amount of data produced by some analyses has reached the limits of many common bioinformatics computing infrastructures. High Performance Computing systems offer a solution to this issue. The Simple Parallel R Interface (SPRINT) is a package that provides biostatisticians with easy access to High Performance Computing systems and allows the addition of parallelized functions to R. Previous work has established that the SPRINT implementation of an R permutation testing function has close to optimal scaling on up to 512 processors on a supercomputer. Access to supercomputers, however, is not always possible, and so the work presented here compares the performance of the SPRINT implementation on a supercomputer with benchmarks on a range of platforms including cloud resources and a common desktop machine with multiprocessing capabilities
Multi-factorial analysis of class prediction error:estimating optimal number of biomarkers for various classification rules
Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive, under investigated, yet vital in determining the optimal number of biomarkers for various classification purposes aimed towards improved detection, diagnosis, and therapeutic monitoring of diseases. We investigate the impact of microarray based data characteristics on the predictive performance for various classification rules using simulation studies. Our investigation using Random Forest, Support Vector Machines, Linear Discriminant Analysis and k-Nearest Neighbour shows that the predictive performance of classifiers is strongly influenced by training set size, biological and technical variability, replication, fold change and correlation between biomarkers. Optimal number of biomarkers for a classification problem should therefore be estimated taking account of the impact of all these factors. A database of average generalization errors is built for various combinations of these factors. The database of generalization errors can be used for estimating the optimal number of biomarkers for given levels of predictive accuracy as a function of these factors. Examples show that curves from actual biological data resemble that of simulated data with corresponding levels of data characteristics. An R package optBiomarker implementing the method is freely available for academic use from the Comprehensive R Archive Network ()