16 research outputs found

    The Voronoi tessellation method in astronomy

    Full text link
    The Voronoi tessellation is a natural way of space segmentation, which has many applications in various fields of science and technology, as well as in social sciences and visual art. The varieties of the Voronoi tessellation methods are commonly used in computational fluid dynamics, computational geometry, geolocation and logistics, game dev programming, cartography, engineering, liquid crystal electronic technology, machine learning, etc. The very innovative results were obtained in astronomy, namely for a large-scale galaxy distribution and cosmic web pattern, for revealing the quasi-periodicity in a pencil-beam survey, for a description of constraints on the isotropic cosmic microwave background and the explosion scenario likely supernova events, for image processing, adaptive smoothing, segmentation, for signal-to-noise ratio balancing, for spectrography data analysis as well as in the moving-mesh cosmology simulation. We briefly describe these results, paying more attention to the practical application of the Voronoi tessellation related to the spatial large-scale galaxy distribution.Comment: 24 pages, 6 figures, accepted to Intelligent Astrophysics, Eds. I. Zelinka, D. Baron, M. Bresci

    Machine learning technique for morphological classification of galaxies at z<0.1 from the SDSS

    Full text link
    Methods. We used different galaxy classification techniques: human labeling, multi-photometry diagrams, Naive Bayes, Logistic Regression, Support Vector Machine, Random Forest, k-Nearest Neighbors, and k-fold validation. Results. We present results of a binary automated morphological classification of galaxies conducted by human labeling, multiphotometry, and supervised Machine Learning methods. We applied its to the sample of galaxies from the SDSS DR9 with redshifts of 0.02 < z < 0.1 and absolute stellar magnitudes of 24m < Mr < 19.4m. To study the classifier, we used absolute magnitudes: Mu, Mg, Mr , Mi, Mz, Mu-Mr , Mg-Mi, Mu-Mg, Mr-Mz, and inverse concentration index to the center R50/R90. Using the Support vector machine classifier and the data on color indices, absolute magnitudes, inverse concentration index of galaxies with visual morphological types, we were able to classify 316 031 galaxies from the SDSS DR9 with unknown morphological types. Conclusions. The methods of Support Vector Machine and Random Forest with Scikit-learn machine learning in Python provide the highest accuracy for the binary galaxy morphological classification: 96.4% correctly classified (96.1% early E and 96.9% late L types) and 95.5% correctly classified (96.7% early E and 92.8% late L types), respectively. Applying the Support Vector Machine for the sample of 316 031 galaxies from the SDSS DR9 at z < 0.1, we found 141 211 E and 174 820 L types among them.Comment: 10 pages, 5 figures. The presentation of these results was given during the EWASS-2017, Symposium "Astroinformatics: From Big Data to Understanding the Universe at Large". It is vailable through \url{http://space.asu.cas.cz/~ewass17-soc/Presentations/S14/Dobrycheva_987.pdf

    Developing a Model for Machine Building Companies to Be Restructured in Russian Mono Company Towns as a Factor and a Condition of Well-Being

    Get PDF
    The model for restructuring machine building enterprises has been developed as to improve economic viability of mono company towns located around machine building enterprises. The paper includes the case study covering the experiences and results of its implementation with a certain mono company town in Russia

    Machine-learning computation of distance modulus for local galaxies

    Full text link
    Quickly growing computing facilities and an increasing number of extragalactic observations encourage the application of data-driven approaches to uncover hidden relations from astronomical data. In this work we raise the problem of distance reconstruction for a large number of galaxies from available extensive observations. We propose a new data-driven approach for computing distance moduli for local galaxies based on the machine-learning regression as an alternative to physically oriented methods. We use key observable parameters for a large number of galaxies as input explanatory variables for training: magnitudes in U, B, I, and K bands, corresponding colour indices, surface brightness, angular size, radial velocity, and coordinates. We performed detailed tests of the five machine-learning regression techniques for inference of mMm-M: linear, polynomial, k-nearest neighbours, gradient boosting, and artificial neural network regression. As a test set we selected 91 760 galaxies at z<0.2z<0.2 from the NASA/IPAC extragalactic database with distance moduli measured by different independent redshift methods. We find that the most effective and precise is the neural network regression model with two hidden layers. The obtained root-mean-square error of 0.35 mag, which corresponds to a relative error of 16\%, does not depend on the distance to galaxy and is comparable with methods based on the Tully-Fisher and Fundamental Plane relations. The proposed model shows a 0.44 mag (20\%) error in the case of spectroscopic redshift absence and is complementary to existing photometric redshift methodologies. Our approach has great potential for obtaining distance moduli for around 250 000 galaxies at z<0.2z<0.2 for which the above-mentioned parameters are already observed.Comment: 8 pages, 5 figures, Accepted for publication in A&

    Criteria for galaxy classification in SDSS

    No full text
    We considered the sample of galaxy pairs collected from SDSS DR5. At first we made a morphological classification of approximately 1100 galaxies by visual inspection. As it is known the galaxy morphological types strongly depend on the color indices, the concentration parameters, galaxy magnitudes, de Vaucouleurs and exponential fit scale radii. Thus we used pairs of these parameters and found the universal criteria which can be used for galaxy morphological classi-cation with the help of our "by-eye" classification. According to our criteria we can select early type galaxies with 90% probability

    THE NEW GALAXY SAMPLE FROM SDSS DR9 AT 0.003 ≤ Z ≤ 0.1

    No full text
    To test the relationships between morphological types of galaxies in pairs/groups and their physical properties (luminosity, mass, color index, the radial velocity, the inverse concentration index, the absolute magnitude, the radius of the de Vaucouleurs or scale radius, etc.) on a larger sample of the local Universe, we need the more representative data. With this aim we processed and prepared a sam­ple of galaxies with 0.003 ≤ z ≤ 0.1 based on the latest SDSS DR9. The initial sample was about 724,000 objects and, consequently, 407,000 galaxy images after the preliminary processing. Because of the large number of duplicate and faulty images, we checked its carefully and obtained finally about 260,000 galaxies in the studied sample at z &lt; 0.1. We discuss this procedure and properties of the studied galaxy sample

    NO THE HOLMBERG EFFECT FOR GALAXY PAIRS SELECTED FROM THE SDSS DR9 AT Z ≤ 0:06

    No full text
     We studied the Holmberg effect in galaxy pairs selected from the SDSS DR9, where 60561galaxies were limited by redshift 0.02 &lt; z &lt; 0.06 and absolute magnitude: Mr ≤ −20.7 m for central galaxies (N=18578) and Mr &gt; −21.5 m for neighbor galaxies (N=41983). We have made a morphological classification for each galaxy using both the visual inspection and machine learning methods. We considered four morphological types of galaxy pairs (E, early, and L, late, types) for testing the Holmberg effect: E- E, E-L, L-E, L-L (first companion of pairs is a central galaxy and second one is a faint satellite galaxy). We concluded about the absence of the Holmberg effect: Rg−i = 0.3 for L-E pairs at 0.04 &lt; z ≤ 0.06 and Rg−i = 0.2 for E-E and E-L pairs at 0.02 ≤ z ≤ 0.04. Summarizing, a correlation of color indices in pairs for the samples of galaxies composed with the half of large sky surveys likely SDSS was not confirmed or confirmed partially. The Holmberg effect is rather connected with morphological types of galaxies than with their color indices. Taking into account a scenario of the secular evolution, the presence of at least one elliptical galaxy in pair may be indicator of previous mergers in the earlier epoch. So, figuring manifestations of the Holmberg effect in its original interpretation no longer seems such urgent.

    BEHIND THE ZONE OF AVOIDANCE OF THE MILKY WAY: WHAT CAN WE RESTORE BY DIRECT AND INDIRECT METHODS?

    No full text

    ENVIRONMENTAL PROPERTIES OF GALAXIES AT Z < 0.1 FROM THE SDSS VIA THE VORONOI TESSELLATION

    No full text
    The aim of our work was to investigate the environmental density of galaxies fromthe SDSS DR9 at z &lt; 0.1 using the 3D Voronoi tessellation. The inverse volume of the Voronoi cell was chosen as a parameter of local environmental density. We examined a density of given bright galaxy taking into account its faint satellites located in the Voronoi cell. We found that with the increase of total galaxy density around the central bright galaxy, the probability that it has the early type is increasing.The aim of our work was to investigate the environmental density of galaxies fromthe SDSS DR9 at z &lt; 0.1 using the 3D Voronoi tessellation. The inverse volume of the Voronoi cell was chosen as a parameter of local environmental density. We examined a density of given bright galaxy taking into account its faint satellites located in the Voronoi cell. We found that with the increase of total galaxy density around the central bright galaxy, the probability that it has the early type is increasing
    corecore